高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分阵列的双基地EMVS-MIMO雷达高分辨多维参数估计

潘小义 谢前朋 孟晓明 陈吉源 艾夏 刘佳琪

潘小义, 谢前朋, 孟晓明, 陈吉源, 艾夏, 刘佳琪. 基于差分阵列的双基地EMVS-MIMO雷达高分辨多维参数估计[J]. 电子与信息学报, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259
引用本文: 潘小义, 谢前朋, 孟晓明, 陈吉源, 艾夏, 刘佳琪. 基于差分阵列的双基地EMVS-MIMO雷达高分辨多维参数估计[J]. 电子与信息学报, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259
PAN Xiaoyi, XIE Qianpeng, MENG Xiaoming, CHEN Jiyuan, AI Xia, LIU Jiaqi. High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259
Citation: PAN Xiaoyi, XIE Qianpeng, MENG Xiaoming, CHEN Jiyuan, AI Xia, LIU Jiaqi. High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259

基于差分阵列的双基地EMVS-MIMO雷达高分辨多维参数估计

doi: 10.11999/JEIT221259
基金项目: 国家自然科学基金(61890545,61890542,61890540),长沙市科技计划项目经费(Kq2209002)
详细信息
    作者简介:

    潘小义:男,副教授,主要研究方向为先进体制雷达对抗

    谢前朋:男,工程师,主要研究方向为阵列信号处理、雷达信号处理

    孟晓明:男,工程师,主要研究方向为雷达对抗工程

    陈吉源:男,博士生,主要研究方向为雷达成像与对抗、阵列设计与处理

    艾夏:男,高级工程师,主要研究方向为空天信息获取与处理

    刘佳琪:男,研究员,主要研究方向为电子对抗、空天信息获取与处理

    通讯作者:

    谢前朋 13721038905@163.com

  • 中图分类号: TN958

High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective

Funds: The National Natural Science Foundation of China (61890545, 61890542, 61890540), Changsha Science and Technology Project Funding Program(Kq2209002)
  • 摘要: 为提升双基地EMVS-MIMO雷达的多维参数估计性能,该文提出利用发射/接收EMVS的差分阵列结构来实现多维参数的高分辨估计。对于阵列接收数据,可以利用高阶张量来实现对发射/接收EMVS的差分阵列的构建。首先,利用高阶张量的交换和缩并规则来构建一个包含原始发射/接收EMVS差分阵列结构的5阶张量模型;通过利用两个选择矩阵,可以剔除该张量模型中差分阵列的重复元素,且获得的差分阵列的自由度为原始阵列自由度的两倍。然后,对新构建的5阶张量模型再次进行张量的缩并处理可以获得一个第3个维度为36的3阶张量模型。最后,通过利用平行因子分解算法可以实现对发射4维参数和接收4维参数进行有效的求解。仿真实验表明,该文对差分阵列的构建有效地实现了双基地EMVS-MIMO雷达中多维参数估计性能的提升。
  • 图  1  双基地 EMVS-MIMO 雷达系统

    图  2  不同算法的计算复杂度随快拍数的变化

    图  3  基于差分阵列的空间谱估计性能

    图  4  均方误差随信噪比的变化

    图  5  均方误差随快拍数的变化

  • [1] CHINTAGUNTA S and PONNUSAMY P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors[J]. Signal Processing, 2018, 147: 163–172. doi: 10.1016/j.sigpro.2018.01.025
    [2] LIU Tingting, WEN Fangqing, SHI Junpeng, et al. A computationally economic location algorithm for bistatic EVMS-MIMO radar[J]. IEEE Access, 2019, 7: 120533–120540. doi: 10.1109/ACCESS.2019.2937577
    [3] WEN Fangqing and SHI Junpeng. Fast direction finding for bistatic EMVS-MIMO radar without pairing[J]. Signal Processing, 2020, 173: 107512. doi: 10.1016/j.sigpro.2020.107512
    [4] WEN Fangqing, SHI Junpeng, and ZHANG Zijing. Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1626–1638. doi: 10.1109/TVT.2019.2957511
    [5] MAO Chenxing, SHI Junpeng, and WEN Fangqing. Target localization in bistatic EMVS-MIMO radar using tensor subspace method[J]. IEEE Access, 2019, 7: 163119–163127. doi: 10.1109/ACCESS.2019.2951892
    [6] CHINTAGUNTA S and PALANISAMY P. DOD and DOA estimation using the spatial smoothing in MIMO radar with the EmV sensors[J]. Multidimensional Systems and Signal Processing, 2018, 29(4): 1241–1253. doi: 10.1007/s11045-017-0500-1
    [7] CHINTAGUNTA S and PONNUSAMY P. Integrated polarisation and diversity smoothing algorithm for DOD and DOA estimation of coherent targets[J]. IET Signal Processing, 2018, 12(4): 447–453. doi: 10.1049/iet-spr.2017.0276
    [8] PONNUSAMY P, SUBRAMANIAM K, and CHINTAGUNTA S. Computationally efficient method for joint DOD and DOA estimation of coherent targets in MIMO radar[J]. Signal Processing, 2019, 165: 262–267. doi: 10.1016/j.sigpro.2019.07.015
    [9] WEN Fangqing, SHI Junpeng, and ZHANG Zijing. Generalized spatial smoothing in bistatic EMVS-MIMO radar[J]. Signal Processing, 2022, 193: 108406. doi: 10.1016/j.sigpro.2021.108406
    [10] 谢前朋, 潘小义, 陈吉源, 等. 基于稀疏阵列的电磁矢量传感器多输入多输出雷达高分辨角度和极化参数联合估计[J]. 物理学报, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895

    XIE Qianpeng, PAN Xiaoyi, CHEN Jiyuan, et al. Efficient angle and polarization parameter estimaiton for electromagnetic vector sensors multiple-input multiple-output radar by using sparse array[J]. Acta Physica Sinica, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [11] 谢前朋, 潘小义, 陈吉源, 等. 基于新型阵列的双基地电磁矢量传感器MIMO雷达高分辨角度参数估计[J]. 电子与信息学报, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130

    XIE Qianpeng, PAN Xiaoyi, CHEN Jiyuan, et al. High resolution angle parameter estimation for bistatic EMVS-MIMO radar based on a new designed array[J]. Journal of Electronics &Information Technology, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130
    [12] WANG Xianpeng, HUANG Mengxing, and WAN Liangtian. Joint 2D-DOD and 2D-DOA estimation for coprime EMVS-MIMO radar[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2950–2966. doi: 10.1007/s00034-020-01605-5
    [13] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [14] LIU Chunlin, VAIDYANATHAN P P, and PAL P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]. Proceedings of 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2639–2642.
    [15] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based two-dimensional DOA estimation for coprime array: From sum–difference coarray viewpoint[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5591–5604. doi: 10.1109/TSP.2017.2739105
    [16] SHI Junpeng, WEN Fangqing, and LIU Tianpeng. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 573–585. doi: 10.1109/TAES.2020.3034012
    [17] ZHENG Hang, SHI Zhiguo, ZHOU Chengwei, et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28: 1545–1549. doi: 10.1109/LSP.2021.3099074
    [18] ZHENG Hang, ZHOU Chengwei, WANG Yong, et al. Sample fourth-order cumulant tensor denoising for DOA estimation with coprime L-shaped array[C]. Proceedings of 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021.
    [19] KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    [20] CICHOCKI A, MANDIC D, DE LATHAUWER L, et al. Tensor decompositions for signal processing applications: From two-way to multiway component analysis[J]. IEEE Signal Processing Magazine, 2015, 32(2): 145–163. doi: 10.1109/MSP.2013.2297439
    [21] SIDIROPOULOS N D, DE LATHAUWER L, FU Xiao, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3551–3582. doi: 10.1109/TSP.2017.2690524
    [22] RAO Wei, LI Dan, and ZHANG Jianqiu. A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom[J]. IEEE Signal Processing Letters, 2018, 25(2): 1–5. doi: 10.1109/LSP.2017.2783370
  • 加载中
图(5)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  150
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-02-01
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回