高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

知识与数据联合驱动的风力发电机叶片动态雷达散射截面统计模型

王晓亮 施宇翔 何炜琨

王晓亮, 施宇翔, 何炜琨. 知识与数据联合驱动的风力发电机叶片动态雷达散射截面统计模型[J]. 电子与信息学报, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242
引用本文: 王晓亮, 施宇翔, 何炜琨. 知识与数据联合驱动的风力发电机叶片动态雷达散射截面统计模型[J]. 电子与信息学报, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242
WANG Xiaoliang, SHI Yuxiang, HE Weikun. Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242
Citation: WANG Xiaoliang, SHI Yuxiang, HE Weikun. Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242

知识与数据联合驱动的风力发电机叶片动态雷达散射截面统计模型

doi: 10.11999/JEIT221242
基金项目: 国家自然科学基金(62141108),中央高校基本科研业务费(3122022085)
详细信息
    作者简介:

    王晓亮:男,副教授,研究方向为雷达信号处理、图像处理与识别

    施宇翔:男,硕士生,研究方向为雷达回波信号统计特征分析

    何炜琨:女,教授,研究方向为雷达信号处理、风电场杂波抑制

    通讯作者:

    王晓亮 wxl_ee@126.com

  • 中图分类号: TN958.2

Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data

Funds: The National Natural Science Foundation of China (62141108), The Fundamental Research Funds for the Central Universities (3122022085)
  • 摘要: 针对风力发电场对雷达等设备影响评估中所需风力发电机动态雷达散射截面(RCS)估计的问题,提出了一种知识与数据联合驱动的风力发电机动态RCS统计模型。首先,利用风力发电机叶片RCS随叶片旋转周期性变化的特点,建立叶片RCS单个单调变化区间内的变化函数。该变化函数由与叶片几何参数相关的峰值RCS、与叶片几何参数无关的调制函数、与材质和形状细节相关的乘性因子组成。其中峰值RCS由理论模型推算得到,针对RCS变化复杂的特点,调制函数和乘性因子利用实测训练数据估计得到。其次,对于待求解型号的风力发电机,根据风力发电机几何参数得到其叶片RCS变化函数,再通过参数估计的方法计算其概率密度函数统计模型。多种不同型号风力发电机实测数据的实验结果,验证了该文给出的风力发电机叶片动态RCS统计模型,与实测数据结果有良好的一致性。
  • 图  1  典型风机叶片特征与圆柱体叶片模型

    图  2  小时风向信息

    图  3  不同型号风机实测RCS综合数据排序后结果

    图  4  本文方法估计的叶片RCS变化函数与实测数据对应RCS变化函数的比较

    图  5  实测数据直方图与参数估计的概率密度函数曲线

    表  1  风电场与风机叶片参数

    雷达编号雷达所在位置风电场名称风机品牌风机型号数量根部半径 /最大弦长(m)叶长(m)
    KDDCDodge CityGray CountryVestasV471700.65 / 2.524.0
    Cimarron IISiemensSWT-2.3-93531.00 / 3.646.0
    EnsignSiemensSWT-2.3-108431.20 / 4.054.0
    KCRPCorpus ChristiMidwaySiemens-GamesaSG 3.4-1321521.45 / 4.364.5
    下载: 导出CSV

    表  2  基于极大似然的分布参数估计(实测数据直接估计/本文方法)

    风机平行状态垂直状态
    尺度参数形状参数尺度参数形状参数
    V470.5250 / 0.40511.9293 / 1.69071.9696 / 2.60981.0303 / 1.2508
    SWT-2.3-931.2416 / 0.96312.0028 / 1.69075.1775 / 6.00261.0736 / 1.2508
    SWT-2.3-1081.3098 / 1.23851.6559 / 1.69077.3717 / 7.42761.1714 / 1.2508
    SG 3.4-1321.6889 / 1.62611.7093 / 1.69078.1494 / 9.19861.1052 / 1.2508
    下载: 导出CSV

    表  3  估计模型与实测数据概率分布函数的差异

    风机平行状态垂直状态
    ${\bar {\varDelta}} _i $$ \max {\varDelta _i} $${ {\bar {\varDelta} } _i}$$ \max {\varDelta _i} $
    V470.04580.10890.09700.1725
    SWT-2.3-930.04150.11500.04960.1038
    SWT-2.3-1080.01740.04800.02720.0692
    SG 3.4-1320.02520.06830.03400.0925
    下载: 导出CSV

    表  4  本文模型、tLocScale(I&Q)模型与实测数据95%分位点对比(dBsm)

    风机平行状态垂直状态
    实测tLocScale(I&Q)本文模型实测tLocScale(I&Q)本文模型
    V477.28460.06067.921815.454310.412316.3754
    SWT-2.3-9314.22749.522115.447722.996322.024623.6108
    SWT-2.3-10815.534411.026617.631125.199724.340225.4613
    SG 3.4-13217.410414.095019.996626.882926.364227.3185
    下载: 导出CSV
  • [1] Global Wind Energy Council. Global wind report 2022[R/OL]. https://gwec.net/global-wind-report-2022/#Download, 2022.
    [2] BRIGADA D J and RYVKINA J. Radar-optimized wind turbine siting[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 403–413. doi: 10.1109/TSTE.2021.3113868
    [3] LAINER M, VENTURA J F I, SCHAUWECKER Z, et al. Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3541–3560. doi: 10.5194/amt-14-3541-2021
    [4] YIN Jiapeng, CHEN Haonan, LI Yongzhen, et al. Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6131–6145. doi: 10.1109/JSTARS.2021.3088324
    [5] ANGULO I, GRANDE O, JENN D, et al. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services[J]. Atmospheric Measurement Techniques, 2015, 8(5): 2183–2193. doi: 10.5194/amt-8-2183-2015
    [6] BEAUCHAMP R M and CHANDRASEKAR V. Suppressing wind turbine signatures in weather radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2546–2562. doi: 10.1109/TGRS.2016.2647604
    [7] ELLA O A and ALNAJJAR K A. Mitigation measures for windfarm effects on radar systems[J]. International Journal of Aerospace Engineering, 2022, 2022: 1083717. doi: 10.1155/2022/1083717
    [8] KENT B M, HIL K C, BUTERBAUGH A, et al. Dynamic radar cross section and radar doppler measurements of commercial general Electric windmill power turbines part 1: Predicted and measured radar signatures[J]. IEEE Antennas and Propagation Magazine, 2008, 50(2): 211–219. doi: 10.1109/MAP.2008.4562424
    [9] BREDEMEYER J, SCHUBERT K, WERNER J, et al. Comparison of principles for measuring the reflectivity values from wind turbines[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10.
    [10] LITOV N, FALKNER B, ZHOU Hengyi, et al. Radar cross section analysis of two wind turbines via a novel millimeter-wave technique and scale model measurements[J]. IEEE Access, 2022, 10: 17897–17907. doi: 10.1109/ACCESS.2022.3148064
    [11] KONG Fanxing. Wind turbine clutter in weather radar: Characterization and mitigation[D]. [Ph. D dissertation], University of Oklahoma, 2014: 56–64.
    [12] 何炜琨, 孙鹏涛, 刘昂. 风轮机叶片电磁散射特性的占比分析与解析模型的建立[J]. 信号处理, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003

    HE Weikun, SUN Pengtao, and LIU Ang. The proportion analysis of the electromagnetic scattering characteristics and the construction of analytical model for wind turbine blades[J]. Journal of Signal Processing, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003
    [13] CHIU S. Wind turbine radar clutter statistics and probability of detection[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 15–20.
    [14] FIORANELLI F, RITCHIE M, BALLERI A, et al. Experimental analysis of multistatic wind turbine radar clutter statistics[J]. Electronics Letters, 2016, 52(3): 226–228. doi: 10.1049/el.2015.3907
    [15] DANOON L R and BROWN A K. Modeling methodology for computing the radar cross section and doppler signature of wind farms[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5166–5174. doi: 10.1109/TAP.2013.2272454
    [16] 吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923

    WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
    [17] EMHEMMED A S, SHEBANI N, ZEREK A, et al. Analysis of RCS and evaluation of PO approximation’s accuracy for simple targets[C]. 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 2019: 666–669.
    [18] ANGULO I, MONTALBAN J, CANIZO J, et al. A measurement-based multipath channel model for signal propagation in presence of wind farms in the UHF band[J]. IEEE Transactions on Communications, 2013, 61(11): 4788–4798. doi: 10.1109/TCOMM.2013.101113.130144
    [19] KNOTT E F, 王永庆, 张澎, 戴春亮, 译. 雷达散射截面测量[M]. 北京: 科学出版社, 2016: 364–365.

    KNOTT E F, WANG Yongqing, ZHANG Peng, DAI Chunliang. translation. Radar Cross Section Measurement[M]. Beijing: Science Press, 2016: 364–365.
    [20] 周树道, 贺宏兵. 现代气象雷达[M]. 北京: 国防工业出版社, 2017: 44.

    ZHOU Shudao and HE Hongbing. Modern Weather Radar[M]. Beijing: National Defense Industry Press, 2017: 44.
    [21] 赵洪山, 董叶叶, 宋鹏, 等. 基于模型的风电机组偏航系统故障检测方法[J]. 太阳能学报, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021

    ZHAO Hongshan, DONG Yeye, SONG Peng, et al. Model-based fault detection method for yaw system of wind turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  156
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2023-07-05
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回