高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机辅助的非正交多址反向散射通信系统max-min速率优化算法

王正强 胡扬 樊自甫 万晓榆 徐勇军 多滨

王正强, 胡扬, 樊自甫, 万晓榆, 徐勇军, 多滨. 无人机辅助的非正交多址反向散射通信系统max-min速率优化算法[J]. 电子与信息学报, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
引用本文: 王正强, 胡扬, 樊自甫, 万晓榆, 徐勇军, 多滨. 无人机辅助的非正交多址反向散射通信系统max-min速率优化算法[J]. 电子与信息学报, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
WANG Zhengqiang, HU Yang, FAN Zifu, WAN Xiaoyu, XU Yongjun, DUO bin. Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
Citation: WANG Zhengqiang, HU Yang, FAN Zifu, WAN Xiaoyu, XU Yongjun, DUO bin. Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210

无人机辅助的非正交多址反向散射通信系统max-min速率优化算法

doi: 10.11999/JEIT221210
基金项目: 国家自然科学基金(61701064, 62271094),四川省区域创新合作项目(2022YFQ0017),重庆市教委科学技术研究项目(KJZD-K202200501),重庆市博士后研究项目(2021XM3082),中国博士后科学基金(2022MD723725)
详细信息
    作者简介:

    王正强:男,副教授,博士生导师,研究方向为无人机通信

    胡扬:男,硕士生,研究方向为反向散射通信

    樊自甫:男,教授,硕士生导师,研究方向为下一代无线通信

    万晓榆:男,教授,博士生导师,研究方向为下一代无线通信

    徐勇军:男,副教授,博士生导师,研究方向为反向散射通信

    多滨:男,教授,硕士生导师,研究方向为无人机通信

    通讯作者:

    王正强 wangzq@cqupt.edu.cn

  • 中图分类号: TN929.5

Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles

Funds: The National Natural Science Foundation of China (61701064,62271094), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200501), Chongqing Postdoctoral Research Project (2021XM3082), China Postdoctoral Science Foundation (2022MD723725)
  • 摘要: 无人机(UAV)、非正交多址(NOMA)和反向散射通信(BC)相结合,可以满足热点地区高容量需求,提高通信质量。该文提出一种无人机辅助的NOMA反向散射通信系统最小速率最大化资源分配算法。考虑无人机发射功率、能量收集、反射系数、传输速率以及连续干扰消除(SIC)解码顺序约束,建立基于系统最小速率最大化的资源分配模型。首先利用块坐标下降将原问题分解为无人机发射功率优化、反射系数优化和无人机位置与SIC解码顺序联合优化3个子问题,然后使用反证法给出无人机最优发射功率,再用变量替换法和连续凸逼近将剩余子问题进一步转化为凸优化问题进行求解。仿真结果表明,所提算法在系统和速率与用户公平性之间具有较好折中。
  • 图  1  系统模型

    图  2  本文方案迭代图

    图  3  不同方案下系统最小速率、和速率和公平指数与无人机最大发射功率${P_{\max }}$之间的关系

    图  4  不同方案下系统最小速率、和速率和公平指数与无人机飞行高度$H$之间的关系

    图  5  不同方案下系统最小速率、和速率和公平指数与BD数目之间的关系

    算法1 最小速率最大化资源分配算法
     初始化:max-min速率$R_{\max - \min }^0$,内层迭代次数$ l = 0 $,外层迭
     代次数$ t = 0 $,惩罚参数$\mu = {\mu _0}$,步长$\gamma = {\gamma _0}$;无人机最大发射
     功率$ {P_{\max }} $,$ {{\mathbf{q}}^0},{{\mathbf{A}}^0},{{\mathbf{B}}^0},{{\mathbf{C}}^0},{{\mathbf{U}}^0},{{\mathbf{G}}^0} $;max-min速率收敛精度
     $ {\varsigma _1} $,惩罚收敛精度$ {\varsigma _2} $,外层最大迭代次数为$ {T_{\max }} $;
     (1) repeat
     (2)  repeat
     (3)    根据给定的$ {{\mathbf{q}}^l} $和$ {{\mathbf{A}}^l} $利用凸优化内点法求解问题式(9)得
          到反射系数$ {{\mathbf{R}}^*} $;
     (4)    根据$ {{\mathbf{R}}^*},{{\mathbf{B}}^l},{{\mathbf{C}}^l},{{\mathbf{U}}^l},{{\mathbf{G}}^l} $利用凸优化内点法求解问题
          式(22)得到无人机位置$ {{\mathbf{q}}^*} $和SIC解码顺序$ {{\mathbf{A}}^*} $;
     (5)    更新$ l = l + 1 $;
     (6)   until $ \left| {R_{\max - \min }^{l + 1} - R_{\max - \min }^l} \right| < {\varsigma _1} $;
     (7)    if $ \max \left\{ {{\varphi _{nm}}} \right\} \gt {\varsigma _2} $
     (8)     更新$ \mu = \gamma \mu $;
     (9)    else
     (10)     更新$ t = t + 1 $;
     (11)    end if
     (12) until $t \ge {T_{\max } }$。
    下载: 导出CSV
  • [1] AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of things: A survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2347–2376. doi: 10.1109/COMST.2015.2444095
    [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964
    [3] BOYER C and ROY S. Backscatter communication and RFID: Coding, energy, and MIMO analysis[J]. IEEE Transactions on Communications, 2014, 62(3): 770–785. doi: 10.1109/TCOMM.2013.120713.130417
    [4] WANG Zhe, DUAN Lingjie, and ZHANG Rui. Adaptive deployment for UAV-aided communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4531–4543. doi: 10.1109/TWC.2019.2926279
    [5] WANG Zhengqiang, CHENG Qu, FAN Zifu, et al. A review of resource allocation studies for non-orthogonal multiple access system[J]. Telecommunication Science, 2018, 34(8): 136–146. doi: 10.11959/j.issn.1000-0801.2018236
    [6] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010
    [7] KHAN W U, LI Xingwang, ZENG Ming, et al. Backscatter-enabled NOMA for future 6G systems: A new optimization framework under imperfect SIC[J]. IEEE Communications Letters, 2021, 25(5): 1669–1672. doi: 10.1109/LCOMM.2021.3052936
    [8] XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2021, 10(2): 353–357. doi: 10.1109/LWC.2020.3031042
    [9] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225
    [10] FARAJZADEH A, ERCETIN O, and YANIKOMEROGLU H. UAV data collection over NOMA backscatter networks: UAV altitude and trajectory optimization[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–7.
    [11] GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx, 2020.
    [12] ZHANG Ningbo, WANG Jing, KANG Guixia, et al. Uplink nonorthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2016, 20(3): 458–461. doi: 10.1109/LCOMM.2016.2521374
    [13] LU Jinhui, WANG Yuntian, LIU Tingting, et al. UAV-enabled uplink non-orthogonal multiple access system: Joint deployment and power control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10090–10102. doi: 10.1109/TVT.2020.3005732
    [14] VU Q D, NGUYEN K G, and JUNTTI M. Max-min fairness for multicast multigroup multicell transmission under backhaul constraints[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.
    [15] NGUYEN T M, AJIB W, and ASSI C. A novel cooperative NOMA for designing UAV-assisted wireless backhaul networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(11): 2497–2507. doi: 10.1109/JSAC.2018.2874136
    [16] WANG Zhengqiang, DU Jin, FAN Zifu, et al. Energy efficiency maximization for multi-carrier cooperative non-orthogonal multiple access systems[J]. Digital Signal Processing, 2022, 130: 103725. doi: 10.1016/j.dsp.2022.103725
    [17] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490
    [18] CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223
    [19] WANG Zhengqiang, WAN Xiaoyu, WEI Xiao, et al. A closed-form power control algorithm in cognitive radio networks based on Nash bargaining solution[C]. The 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017: 681–685.
    [20] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060
    [21] ZHANG Yanliang, HE Wenjing, LI Xingwang, et al. Covert communication in downlink NOMA systems with channel uncertainty[J]. IEEE Sensors Journal, 2022, 22(19): 19101–19112. doi: 10.1109/JSEN.2022.3201319
    [22] LI Geng, LIU Huiling, HUANG Gaojian, et al. Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021(1): 198. doi: 10.1186/s13638-021-02070-7
    [23] HUA Meng and WU Qingqing. Throughput maximization for IRS-aided MIMO FD-WPCN with non-linear EH model[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 918–932. doi: 10.1109/JSTSP.2022.3179840
    [24] LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  252
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2023-02-09
  • 网络出版日期:  2023-02-11
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回