高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辅助变量增强的可逆彩色图像灰度化

廖一帆 李子豪 伍春花 汪国有 刘且根

廖一帆, 李子豪, 伍春花, 汪国有, 刘且根. 基于辅助变量增强的可逆彩色图像灰度化[J]. 电子与信息学报, 2023, 45(12): 4448-4457. doi: 10.11999/JEIT221205
引用本文: 廖一帆, 李子豪, 伍春花, 汪国有, 刘且根. 基于辅助变量增强的可逆彩色图像灰度化[J]. 电子与信息学报, 2023, 45(12): 4448-4457. doi: 10.11999/JEIT221205
LIAO Yifan, LI Zihao, WU Chunhua, WANG Guoyou, LIU Qiegen. Invertible Color Image Decolorization Based on Variable Augmented Network[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4448-4457. doi: 10.11999/JEIT221205
Citation: LIAO Yifan, LI Zihao, WU Chunhua, WANG Guoyou, LIU Qiegen. Invertible Color Image Decolorization Based on Variable Augmented Network[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4448-4457. doi: 10.11999/JEIT221205

基于辅助变量增强的可逆彩色图像灰度化

doi: 10.11999/JEIT221205
基金项目: 国家优秀青年科学基金(62122033),江西省重点研发计划(20212BBE53001)
详细信息
    作者简介:

    廖一帆:女,博士,主要研究方向为计算机视觉与图像处理

    李子豪:男,硕士,主要研究方向为图像重建、计算机视觉与图像处理

    伍春花:女,硕士,主要研究方向为计算成像、计算机视觉与图像处理

    汪国有:男,教授,主要研究方向为字典学习、压缩感知、计算机视觉与图像处理

    刘且根:男,教授,主要研究方向为字典学习、压缩感知、计算机视觉与图像处理

    通讯作者:

    刘且根 liuqiegen@ncu.edu.cn

  • 中图分类号: TN911; TP751

Invertible Color Image Decolorization Based on Variable Augmented Network

Funds: The National Science Fund for Outstanding Young Scholars (62122033), The Key Research and Development Program of Jiangxi Province (20212BBE53001)
  • 摘要: 彩色图像灰度化是一种被广泛应用于各个领域的图像压缩方式,但很少有研究关注彩色图像与灰度图像之间的相互转换技术。该文运用深度学习,创新性地提出了一种基于辅助变量增强的可逆彩色图像灰度化方法。该方法使用变量增强技术来保证输出与输入变量通道数相同以满足网络的可逆特性。具体来说,该方法通过可逆神经网络的正向过程实现彩色图像灰度化,逆向过程实现灰度图像的色彩复原。将所提方法在VOC2012, NCD和Wallpaper数据集上进行定性和定量比较。实验结果表明,所提方法在评价指标上均获得了更好的结果。无论是在全局还是局部,生成图像都可以最大程度地保留亮度、颜色对比度和结构相关性等特征。
  • 图  1  基于辅助变量增强的可逆彩色图像灰度化模型的可视化结构图

    图  2  可逆块的详细结构图

    图  3  不同算法在不同数据集上图像灰度化效果

    图  4  原始彩色图像中细节放大图的灰度化结果

    图  5  原始彩色图像中细节放大图的色彩复原结果

    表  1  Wallpaper数据集的CCPR, CCFR和E-score结果

    τCCPRCCFRE-score
    GcsLedecolorVA-IDNGcsLedecolorVA-IDNGcsLedecolorVA-IDN
    10.95780.96380.95550.92750.92940.97290.94180.94560.9637
    20.92810.93610.92180.88500.88850.96340.90480.91050.9414
    30.90650.91510.89730.86480.86870.95860.88400.89020.9261
    40.88630.89510.87430.85560.85950.95550.86940.87590.9122
    50.86850.87730.85380.85030.85470.95360.85810.86490.9000
    60.85150.86010.83460.84800.85170.95180.84840.85500.8884
    70.83520.84370.81600.84620.84950.94990.83930.84570.8768
    80.81970.82790.79790.84550.84900.94790.83100.83750.8654
    90.80440.81240.78050.84580.84890.94560.82320.82940.8539
    100.78940.79710.76330.84610.84850.94400.81540.82120.8428
    下载: 导出CSV

    表  2  VOC2012数据集的CCPR, CCFR和E-score结果

    τCCPRCCFRE-score
    GcsLedecolorVA-IDNGcsLedecolorVA-IDNGcsLedecolorVA-IDN
    10.96870.97100.96830.93820.93780.97080.95310.95390.9695
    20.94040.94460.94040.86400.86300.95570.90020.90160.9479
    30.91850.92440.91950.81300.81130.95180.86210.86370.9352
    40.89720.90520.89890.78350.78120.95300.83600.83810.9249
    50.87880.88870.88100.76670.76390.95460.81830.82090.9159
    60.86170.87360.86420.75890.75510.95580.80620.80920.9072
    70.84580.85950.84830.75600.75160.95800.79730.80090.8992
    80.83080.84610.83340.75630.75120.95970.79060.79470.8913
    90.81660.83330.81910.75890.75290.96090.78530.78980.8833
    100.80310.82110.80550.76280.75680.96200.78090.78630.8755
    下载: 导出CSV

    表  3  NCD数据集的CCPR, CCFR和E-score结果

    τCCPRCCFRE-score
    GcsLedecolorVA-IDNGcsLedecolorVA-IDNGcsLedecolorVA-IDN
    10.95030.95870.94510.94660.93890.97160.94800.94830.9579
    20.94930.95810.94310.91840.89760.96440.93270.92610.9533
    30.94710.95680.94310.90100.87290.96110.92230.91190.9516
    40.94240.95350.93990.89250.85720.96040.91530.90150.9496
    50.93760.95070.93620.88830.84810.96120.91040.89480.9480
    60.93170.94770.93110.88670.84290.96190.90640.89030.9456
    70.92520.94500.92510.88870.84050.96250.90400.88760.9427
    80.92030.94320.92050.89000.83980.96300.90200.88620.9403
    90.91310.94100.91270.89360.84070.96370.89990.88560.9362
    100.90580.93900.90390.89710.84260.96450.89770.88560.9315
    下载: 导出CSV

    表  4  彩色图像灰度化的PSNR和SSIM值

    数据指标VOC2012WallpaperNCD
    IDNVA-IDNIDNVA-IDNIDNVA-IDN
    PSNR (dB)40.66045.64834.96937.78143.61145.639
    SSIM0.97900.99820.90920.99130.97910.9988
    下载: 导出CSV

    表  5  灰度图像色彩复原的PSNR和SSIM值

    数据指标VOC2012WallpaperNCD
    IDNVA-IDNIDNVA-IDNIDNVA-IDN
    PSNR (dB)39.50564.75935.06864.69642.24545.777
    SSIM0.98680.99980.95530.99980.98840.9969
    下载: 导出CSV
  • [1] LIU Qiegen, XIONG Jiaojiao, LI Zhu, et al. Extended RGB2Gray conversion model for efficient contrast preserving decolorization[J]. Multimedia Tools and Applications, 2017, 76(12): 14055–14074. doi: 10.1007/s11042-016-3748-9
    [2] ZHANG Lina and YI Wan. Color-to-gray conversion based on boundary points[C]. 11th International Conference on Communications, Circuits and Systems, Chengdu, China, 2022: 241–245.
    [3] LIU Qiegen, LI Sanqian, XIONG Jiaojiao, et al. WpmDecolor: Weighted projection maximum solver for contrast-preserving decolorization[J]. The Visual Computer, 2019, 35(2): 205–221. doi: 10.1007/s00371-017-1464-8
    [4] 朱波, 汶德胜, 王飞, 等. 应用字典学习算法改善Bayer格式图像彩色恢复效果[J]. 电子与信息学报, 2013, 35(4): 812–819. doi: 10.3724/SP.J.1146.2012.00947

    ZHU Bo, WEN Desheng, WANG Fei, et al. Improvement of Bayer-pattern demosaicking with dictionary learning algorithm[J]. Journal of Electronics &Information Technology, 2013, 35(4): 812–819. doi: 10.3724/SP.J.1146.2012.00947
    [5] ZHU Wen, HU Ruizhen, and LIU Ligang. Grey conversion via perceived-contrast[J]. The Visual Computer, 2014, 30(3): 299–309. doi: 10.1007/s00371-013-0854-9
    [6] 卢红阳, 刘且根, 熊娇娇, 等. 基于最大加权投影求解的彩色图像灰度化对比度保留算法[J]. 自动化学报, 2017, 43(5): 843–854. doi: 10.16383/j.aas.2017.c160077

    LU Hongyang, LIU Qiegen, XIONG Jiaojiao, et al. Maximum weighted projection solver for contrast preserving decolorization[J]. Acta Automatica Sinica, 2017, 43(5): 843–854. doi: 10.16383/j.aas.2017.c160077
    [7] LU Cewu, XU Li, and JIA Jiaya. Contrast preserving decolorization[C]. 2012 IEEE International Conference on Computational Photography, Seattle, USA, 2012: 1–7.
    [8] LU Cewu, XU Li, and JIA Jiaya. Real-time contrast preserving decolorization[C]. SIGGRAPH Asia 2012 Technical Briefs, Singapore, 2012: 34.
    [9] LIU Qiegen, LIU P X, WANG Yuhao, et al. Semiparametric decolorization with Laplacian-based perceptual quality metric[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9): 1856–1868. doi: 10.1109/TCSVT.2016.2555779
    [10] HSIN C, LE H N, and SHIN S J. Color to grayscale transform preserving natural order of hues[C]. Proceedings of 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 2011: 1–6.
    [11] ANCUTI C and ANCUTI C O. Laplacian-guided image decolorization[C]. 2016 IEEE International Conference on Image Processing, Phoenix, USA, 2016: 4107–4111.
    [12] AN Jiancheng, KPEYITON K G, and SHI Qingnan. Grayscale images colorization with convolutional neural networks[J]. Soft Computing, 2020, 24(7): 4751–4758. doi: 10.1007/s00500-020-04711-3
    [13] DU Kangning, LIU Changtong, CAO Lin, et al. Double-channel guided generative adversarial network for image colorization[J]. IEEE Access, 2021, 9: 21604–21617. doi: 10.1109/ACCESS.2021.3055575
    [14] VITORIA P, RAAD L, and BALLESTER C. ChromaGAN: Adversarial picture colorization with semantic class distribution[C]. Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 2434–2443.
    [15] XIA Menghan, LIU Xueting, and WONG T T. Invertible grayscale[J]. ACM Transactions on Graphics, 2018, 37(6): 246. doi: 10.1145/3272127.3275080
    [16] ZHAO Rui, LIU Tianshan, XIAO Jun, et al. Invertible image decolorization[J]. IEEE Transactions on Image Processing, 2021, 30: 6081–6095. doi: 10.1109/TIP.2021.3091902
    [17] LIU Qiegen and LEUNG H. Variable augmented neural network for decolorization and multi-exposure fusion[J]. Information Fusion, 2019, 46: 114–127. doi: 10.1016/j.inffus.2018.05.007
    [18] XING Yazhou, QIAN Zian, and CHEN Qifeng. Invertible image signal processing[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6283–6292.
    [19] XIAO Mingqing, ZHENG Shuxin, LIU Chang, et al. Invertible image rescaling[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 126–144.
    [20] KINGMA D P and DHARIWAL P. Glow: Generative flow with invertible 1x1 convolutions[C]. Proceedings of International Conference on Neural Information Processing Systems 2018, Montréal, Canada, 2018: 10236-10245.
    [21] LIU Qiegen, LIU P X, XIE Weisi, et al. GcsDecolor: Gradient correlation similarity for efficient contrast preserving decolorization[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2889–2904. doi: 10.1109/TIP.2015.2423615
    [22] LIU Qiegen, Shao Guangpu, WANG Yuhao, et al. Log-Euclidean metrics for contrast preserving decolorization[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5772–5783. doi: 10.1109/TIP.2017.2745104
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  314
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回