高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型

周涛 党培 陆惠玲 侯森宝 彭彩月 师宏斌

周涛, 党培, 陆惠玲, 侯森宝, 彭彩月, 师宏斌. 跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型[J]. 电子与信息学报, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204
引用本文: 周涛, 党培, 陆惠玲, 侯森宝, 彭彩月, 师宏斌. 跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型[J]. 电子与信息学报, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204
ZHOU Tao, DANG Pei, LU Huiling, HOU Senbao, PENG Caiyue, SHI Hongbin. A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204
Citation: ZHOU Tao, DANG Pei, LU Huiling, HOU Senbao, PENG Caiyue, SHI Hongbin. A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204

跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型

doi: 10.11999/JEIT221204
基金项目: 国家自然科学基金(62062003),宁夏自然科学基金(2022AAC03149),北方民族大学引进人才科研启动项目(2020KYQD08)
详细信息
    作者简介:

    周涛:男,博士,二级教授,博士生导师,硕士生导师,CSIG理事,CSS理事,研究方向为计算机辅助诊断、医学图像分析与处理、模式识别等

    党培:女,硕士生,研究方向为图像图形智能处理

    陆惠玲:女,副教授,研究方向为医学图像分析处理

    侯森宝:男,硕士生,研究方向为图像图形智能处理

    彭彩月:女,硕士生,研究方向为图像图形智能处理

    师宏斌:男,教授,主任医师,硕士生导师,研究方向为泌尿生殖系统肿瘤

    通讯作者:

    党培 d030025@163.com

  • 中图分类号: TN911.73; TP391

A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional

Funds: The National Natural Science Foundation of China (62062003), The Natural Science Foundation of Ningxia (2022AAC03149), The Introduction of Talents and Scientific Research Start-up Project of Northern University for Nationalities (2020KYQD08)
  • 摘要: 多模态医学图像能够有效融合解剖图像和功能图像的信息,将人体内部的功能、解剖等多方面信息反映在同一幅图像上,在临床上有十分重要的意义。针对如何高效利用多模态医学图像信息的综合表达能力,以及如何充分提取跨尺度上下文信息的问题,该文提出跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型。该模型主要改进是,首先,在编码器部分设计了PET/CT主干分支和PET, CT辅助分支提取多模态图像信息;然后,在跳跃连接部分设计了跨模态跨维度注意力模块从模态和维度角度出发捕获跨模态图像各维的有效信息;其次,在瓶颈层构造跨尺度Transformer模块,自适应融合深层的语义信息和浅层的空间信息使网络学习到更多的上下文信息,并从中获取跨尺度全局信息;最后,在解码器部分提出多尺度自适应解码特征融合模块,聚合并充分利用解码路径得到精细程度不同的多尺度特征图,缓解上采样引入的噪声。在临床多模态肺部医学图像数据集验证算法的有效性,结果表明所提模型对于肺部病灶分割的Acc, Recall, Dice, Voe, Rvd和Miou分别为97.99%, 94.29%, 95.32%, 92.74%, 92.95%和90.14%,模型对于形状复杂的病灶分割具有较高的精度和相对较低的冗余度。
  • 图  1  跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型图

    图  2  跨模态跨尺度跨维度模块

    图  3  跨模态相关性实验的雷达图和可视化分割结果图

    图  4  不同分割网络的雷达图和可视化分割结果

    图  5  跨模态跨尺度跨维度实验的雷达图和可视化分割结果图

    表  1  评价指标

    评价指标定义评价指标定义
    Acc${\rm{Acc}} = \dfrac{ \rm{TP + FN} }{ \rm{TP + TN + FP + FN} }$Voe${\rm{Voe} } = {\rm{abs} }\left( {1 - \left| {\dfrac{ { {{P} } \cap {{G} } } }{ { {{P} } \cup {{G} } } } } \right|} \right)$
    Recall${\rm{Recall}} = \dfrac{ \rm{TP} }{ \rm{TP + FN} }$Rvd${\rm{Rvd} } = {\rm{abs} }\left( {\dfrac{ {\left( { {{P} } - {{G} } } \right)} }{ {{G} } } } \right)$
    Dice${\rm{Dice}} = \dfrac{ {2 \times {\rm{TP}}} }{ \rm{FN + TP + TP + FP} }$Miou${\rm{Miou}} = \dfrac{ {{\rm{TP}}} }{ {{\rm{FN}} + {\rm{TP}} + {\rm{FP}}} }$
    下载: 导出CSV

    表  2  跨模态相关性实验分割结果(%)

    模型AccRecallDiceVoeRvdMiou
    U-Net[11]94.7787.2387.9891.3391.4379.60
    Y-Net[12]97.6290.8994.1391.2591.8389.11
    本文97.9994.2995.3292.7492.9590.14
    下载: 导出CSV

    表  3  不同分割网络对比实验分割结果(%)

    模型AccRecallDiceVoeRvdMiou
    UNet++[13]92.1980.6782.0385.6186.2370.62
    SegNet[14]92.0981.9682.2586.8886.9070.60
    Attention UNet [15]92.3780.9182.3086.0386.6871.11
    SEResUNet[16]92.7881.5683.4588.1588.5872.60
    MsTGANet[10]97.2981.4883.3486.5687.2872.54
    MEAU-Net[3]96.8493.7692.7688.3586.9386.89
    本文97.9994.2995.3292.7492.9590.14
    下载: 导出CSV

    表  4  跨模跨尺度跨维度实验分割结果(%)

    模型AccRecallDiceVoeRvdMiou
    MUNet96.4485.8791.1885.3486.5684.15
    C2MUNet95.6181.4488.9580.1582.3880.60
    TMUNet96.3584.6591.1583.5285.1284.03
    DMUNet97.1891.4393.2289.7389.9987.52
    TDMUNet96.9784.6592.7088.5189.1786.62
    C2DMUNet96.5794.7892.4087.6085.9086.34
    C2TMUNet97.3389.7193.5789.6690.4088.11
    本文97.9994.2995.3292.7492.9590.14
    下载: 导出CSV
  • [1] WANG Xue, LI Zhanshan, HUANG Yongping, et al. Multimodal medical image segmentation using multi-scale context-aware network[J]. Neurocomputing, 2022, 486: 135–146. doi: 10.1016/j.neucom.2021.11.017
    [2] FU Xiaohang, LEI Bi, KUMAR A, et al. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(9): 3507–3516. doi: 10.1109/JBHI.2021.3059453
    [3] 周涛, 董雅丽, 刘珊, 等. 用于肺部肿瘤图像分割的跨模态多编码混合注意力U-Net[J]. 光子学报, 2022, 51(4): 0410006. doi: 10.3788/gzxb20225104.0410006

    ZHOU Tao, DONG Yali, LIU Shan, et al. Cross-modality multi-encoder hybrid attention U-Net for lung tumors images segmentation[J]. Acta Photonica Sinica, 2022, 51(4): 0410006. doi: 10.3788/gzxb20225104.0410006
    [4] KUMAR A, FULHAM M, FENG Dagan, et al. Co-learning feature fusion maps from PET-CT images of lung cancer[J]. IEEE Transactions on Medical Imaging, 2020, 39(1): 204–217. doi: 10.1109/TMI.2019.2923601
    [5] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957–979. doi: 10.16383/j.aas.c220027

    TIAN Yonglin, WANG Yutong, WANG Jiangong, et al. Key problems and progress of vision transformers: The state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957–979. doi: 10.16383/j.aas.c220027
    [6] 胡敏, 周秀东, 黄宏程, 等. 基于改进U型神经网络的脑出血CT图像分割[J]. 电子与信息学报, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996

    HU Min, ZHOU Xiudong, HUANG Hongcheng, et al. Computed-tomography image segmentation of cerebral hemorrhage based on improved U-shaped neural network[J]. Journal of Electronics &Information Technology, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996
    [7] WANG Ziyue, PENG Yanjun, LI Dapeng, et al. MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI images[J]. Applied Intelligence, 2022, 52(5): 5225–5240. doi: 10.1007/s10489-021-02720-9
    [8] ZHOU Tao, YE Xinyu, LU Huiling, et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 2022: 2384830. doi: 10.1155/2022/2384830
    [9] LIU Songtao, HUANG Di, and WANG Yunhong. Learning spatial fusion for single-shot object detection[EB/OL]. https://arxiv.org/abs/1911.09516v1, 2019.
    [10] WANG Meng, ZHU Weifang, SHI Fei, et al. MsTGANet: Automatic drusen segmentation from retinal OCT images[J]. IEEE Transactions on Medical Imaging, 2022, 41(2): 394–406. doi: 10.1109/TMI.2021.3112716
    [11] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234–241.
    [12] LAN Hengrong, JIANG Daohuai, YANG Changchun, et al. Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 2020, 20: 100197. doi: 10.1016/j.pacs.2020.100197
    [13] ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
    [14] BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [15] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999, 2018.
    [16] CAO Zheng, YU Bohan, LEI Biwen, et al. Cascaded SE-ResUnet for segmentation of thoracic organs at risk[J]. Neurocomputing, 2021, 453: 357–368. doi: 10.1016/j.neucom.2020.08.086
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1071
  • HTML全文浏览量:  662
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-12
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回