高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助的反向散射通信信道的传播模拟

余洪鑫 冯菊 杜伟 廖成

余洪鑫, 冯菊, 杜伟, 廖成. 智能反射面辅助的反向散射通信信道的传播模拟[J]. 电子与信息学报, 2023, 45(7): 2317-2324. doi: 10.11999/JEIT221195
引用本文: 余洪鑫, 冯菊, 杜伟, 廖成. 智能反射面辅助的反向散射通信信道的传播模拟[J]. 电子与信息学报, 2023, 45(7): 2317-2324. doi: 10.11999/JEIT221195
YU Hongxin, FENG Ju, DU Wei, LIAO Cheng. Propagation Modeling of Backscatter Communication Channels Assisted by Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2317-2324. doi: 10.11999/JEIT221195
Citation: YU Hongxin, FENG Ju, DU Wei, LIAO Cheng. Propagation Modeling of Backscatter Communication Channels Assisted by Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2317-2324. doi: 10.11999/JEIT221195

智能反射面辅助的反向散射通信信道的传播模拟

doi: 10.11999/JEIT221195
基金项目: 国家自然科学基金(62271416),四川省自然科学基金(2022NSFSC0494)
详细信息
    作者简介:

    余洪鑫:男,博士生,研究方向为计算电磁学、电波传播等

    冯菊:女,副教授,硕士生导师,研究方向为计算电磁学、电波传播、天线理论及应用等

    杜伟:男,博士生,研究方向为电波传播、涡旋波通信等

    廖成:男,教授,博士生导师,研究方向为计算电磁学、电磁散射与逆散射、天线理论及应用等

    通讯作者:

    冯菊 fengju-fj@swjtu.edu.cn

  • 中图分类号: TN011; TN914

Propagation Modeling of Backscatter Communication Channels Assisted by Intelligent Reflecting Surface

Funds: The National Natural Science Foundation of China (62271416), The Natural Science Foundation of Sichuan Province (2022NSFSC0494)
  • 摘要: 为了解决引入智能反射面(IRS)后反向散射通信(BackCom)信道的传播模拟问题,该文提出一种基于抛物方程(PE)和矩量法(MoM)的高效混合数值方法。该方法将电大场景下IRS辅助信道的传播建模问题分解为电波传播与电磁散射两个子问题,分别采用PE和MoM进行求解。通过对视距和非视距场景下IRS辅助的信道进行模拟,探讨了PE-MoM混合求解技术的高效性。仿真结果表明,与MoM相比,所提算法的计算速度提升了6.46倍,计算资源消耗也下降了81%,且相对均方根误差仅为3.89%。对比结果表明所提出的PE-MoM方法能够在兼顾计算精度和计算效率的同时,实现IRS辅助的BackCom信道的传播模拟。
  • 图  1  PE-MoM传播模型3维几何示意图

    图  2  PE-MoM传播模型仿真流程图

    图  3  网格剖分示意图

    图  4  三线性插值示意图

    图  5  一个IRS辅助的通信信道

    图  6  IRS上的表面电流分布

    图  7  z = 0.5 m高处横截面电场分量|Ez|对比

    图  8  一个IRS辅助的非视距通信信道

    图  9  z = 0.5 m高处横截面电场主分量|Ez|对比

    图  10  不同接收路径下电场幅值变化曲线

    表  1  计算时间和内存消耗对比

    计算时间(s)内存消耗(GB)
    PE-MoM3202.14
    MoM206811.36
    下载: 导出CSV
  • [1] STOCKMAN H. Communication by means of reflected power[J]. Proceedings of the IRE, 1948, 36(10): 1196–1204. doi: 10.1109/JRPROC.1948.226245
    [2] 徐勇军, 杨浩克, 叶迎晖, 等. 反向散射通信网络资源分配综述[J]. 物联网学报, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215

    XU Yongjun, YANG Haoke, YE Yinghui, et al. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215
    [3] GRIFFIN J D and DURGIN G D. Complete link budgets for backscatter-radio and RFID systems[J]. IEEE Antennas and Propagation Magazine, 2009, 51(2): 11–25. doi: 10.1109/MAP.2009.5162013
    [4] KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559
    [5] LIU V, PARKS A, TALLA V, et al. Ambient backscatter: Wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 39–50. doi: 10.1145/2534169.2486015
    [6] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [7] JIA Xiaolun and ZHOU Xiangyun. IRS-assisted ambient backscatter communications utilizing deep reinforcement learning[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2374–2378. doi: 10.1109/LWC.2021.3100901
    [8] ÖZDOGAN Ö, BJÖRNSON E, and LARSSON E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling[J]. IEEE Wireless Communications Letters, 2020, 9(5): 581–585. doi: 10.1109/LWC.2019.2960779
    [9] NAJAFI M, JAMALI V, SCHOBER R, et al. Physics-based modeling and scalable optimization of large intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(4): 2673–2691. doi: 10.1109/TCOMM.2020.3047098
    [10] ZHOU Ruya, CHEN Xiangyu, TANG Wankai, et al. Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces[C]. 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022: 1–5.
    [11] SARKAR D and ANTAR Y. Electromagnetic insights into path loss modelling of IRS-assisted SISO links: Method-of-moment based analysis[J]. Frontiers in Communications and Networks, 2021, 2: 733698. doi: 10.3389/frcmn.2021.733698
    [12] XING Yunchou, VOOK F, VISOTSKY E, et al. Raytracing-based system performance of intelligent reflecting surfaces at 28 GHz[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 498–503.
    [13] GRADONI G and RENZO M D. End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances[J]. IEEE Wireless Communications Letters, 2021, 10(5): 938–942. doi: 10.1109/LWC.2021.3050826
    [14] SARKAR D, MIKKI S, ANTAR Y, et al. An electromagnetic framework for the deployment of reconfigurable intelligent surfaces to control massive MIMO channel characteristics[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
    [15] LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IEEE, 2000: 5.
    [16] MAKAROV S N. Antenna and EM Modeling with MATLAB[M]. New York: John Wiley & Sons, 2002.
    [17] JANASWAMY R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716–1728. doi: 10.1109/TAP.2003.815415
    [18] LYTAEV M, BORISOV E, and VLADYKO A. V2I propagation loss predictions in simplified urban environment: A two-way parabolic equation approach[J]. Electronics, 2020, 9(12): 2011. doi: 10.3390/electronics9122011
    [19] AHDAB Z E and AKLEMAN F. Radiowave propagation analysis with a bidirectional 3-D vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1958–1966. doi: 10.1109/TAP.2017.2670321
    [20] 张青洪. 大区域地理环境的电磁建模及高效抛物方程方法研究[D]. [博士论文], 西南交通大学, 2016.

    ZHANG Qinghong. Study on electromagnetic modeling of large area geographical environment and efficient parabolic equation method[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2016.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  310
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-11-24
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回