高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物联网中带有隐私保护的鲁棒联邦学习研究

杨志刚 王卓彤 吴大鹏 王汝言 吴渝 吕翊

杨志刚, 王卓彤, 吴大鹏, 王汝言, 吴渝, 吕翊. 物联网中带有隐私保护的鲁棒联邦学习研究[J]. 电子与信息学报, 2023, 45(12): 4235-4244. doi: 10.11999/JEIT221193
引用本文: 杨志刚, 王卓彤, 吴大鹏, 王汝言, 吴渝, 吕翊. 物联网中带有隐私保护的鲁棒联邦学习研究[J]. 电子与信息学报, 2023, 45(12): 4235-4244. doi: 10.11999/JEIT221193
YANG Zhigang, WANG Zhuotong, WU Dapeng, WANG Ruyan, WU Yu, LÜ Yi. Research on Data Heterogeneous Robust Federated Learning with Privacy Protection in Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4235-4244. doi: 10.11999/JEIT221193
Citation: YANG Zhigang, WANG Zhuotong, WU Dapeng, WANG Ruyan, WU Yu, LÜ Yi. Research on Data Heterogeneous Robust Federated Learning with Privacy Protection in Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4235-4244. doi: 10.11999/JEIT221193

物联网中带有隐私保护的鲁棒联邦学习研究

doi: 10.11999/JEIT221193
基金项目: 国家自然科学基金(61901071, 61871062, 61771082, 62271096, U20A20157),重庆市自然科学基金(cstc2020jcyj-zdxmX0024),重庆市高校创新研究群体(CXQT20017),重庆高校创新团队建设计划(CXTDX201601020),重邮信通青创团队支持计划(SCIE-QN-2022-04)
详细信息
    作者简介:

    杨志刚:男,副教授,研究方向为隐私计算等

    王卓彤:女,硕士生,研究方向为联邦学习

    吴大鹏:男,教授,研究方向为泛在无线网络、社会计算等

    王汝言:男,教授,研究方向为泛在网络、多媒体信息处理等

    吴渝:女,教授,研究方向为网络智能、数字媒体、数据挖掘

    吕翊:男,教授,研究方向为下一代光网络理论与技术

    通讯作者:

    吴大鹏 wudp@cqupt.edu.cn

  • 中图分类号: TN915; TP399

Research on Data Heterogeneous Robust Federated Learning with Privacy Protection in Internet of Things

Funds: The National Natural Science Foundation of China (61901071, 61871062, 61771082, 62271096, U20A20157), The Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0024), The University Innovation Research Group of Chongqing Foundation (CXQT20017), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020), The Youth Innovation Group Support Program of ICE Discipline of Chongqing University of Posts and Telecommunications (SCIE-QN-2022-04)
  • 摘要: 联邦学习允许数据不出本地的情况下实现数据价值的有效流动,被认为是物联网(IoT)场景下兼顾数据共享与隐私保护的有效方法。然而,联邦学习系统易受拜占庭攻击和推理攻击的影响,导致系统的鲁棒性和数据的隐私性受损。物联网设备的数据异构性和资源瓶颈,也为带有隐私保护的鲁棒聚合算法设计带来巨大挑战。该文提出面向异构物联网的带有数据重采样的鲁棒聚合方法Re-Sim,通过测量方向相似性和标准化更新幅度实现模型的鲁棒聚合,并采用数据重采样技术增强数据异构环境下模型的鲁棒性。同时构建轻量安全聚合协议(LSA),在保证数据隐私性的同时兼顾模型鲁棒性、准确性和计算开销,并从理论上对协议的隐私性进行了分析。仿真结果表明,该方案能在数据异构情况下有效抵抗拜占庭攻击和推理攻击,与基线方法相比,该文所提方案精度提高1%~3%,同时减轻客户端侧计算开销79%。
  • 图  1  系统模型

    图  2  鲁棒聚合算法

    图  3  轻量安全聚合协议

    图  4  MNIST数据集上$ \sigma = 0.5 $时各鲁棒算法准确度

    图  5  MNIST数据集上$ \sigma = 0.8 $时各鲁棒算法准确度

    图  6  Fashion MNIST数据集上$ \sigma = 0.5 $时各鲁棒算法准确度

    图  7  Fashion MNIST数据集上$ \sigma = 0.8 $时各鲁棒算法准确度

    图  8  不同算法在设备端和服务器端计算开销对比

    表  1  MNIST和Fashion MNIST在IID设置下的算法准确度(%)

    数据集模型攻击方式FedSGDKrumMedianTrimeanRSANRe-Sim
    MNISTLeNet-5无攻击97.1494.4996.7896.7996.9497.16
    SF11.3594.4095.1094.7395.3296.21
    GA12.4195.0795.7396.2896.6896.76
    NA81.7494.4696.4996.8796.5897.03
    Fashion MNISTLeNet-5无攻击85.1782.8085.6885.7385.7685.89
    SF9.9881.7682.8883.3982.5783.43
    GA16.1782.7785.2784.9785.1685.44
    NA62.9282.1585.4685.4185.3385.64
    下载: 导出CSV
  • [1] 黄新林, 郑人华. 基于强化学习的802.11ax上行链路调度算法[J]. 电子与信息学报, 2022, 44(5): 1800–1808. doi: 10.11999/JEIT210590

    HUANG Xinlin and ZHENG Renhua. 802.11ax uplink scheduling algorithm based on reinforcement learning[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1800–1808. doi: 10.11999/JEIT210590
    [2] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [3] BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 118–128.
    [4] YIN Dong, CHEN Yudong, RAMCHANDRAN K, et al. Byzantine-robust distributed learning: Towards optimal statistical rates[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5636–5645.
    [5] MELIS L, SONG Congzheng, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]. 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2019: 691–706.
    [6] XIONG Jinbo, BI Renwan, TIAN Youliang, et al. Toward lightweight, privacy-preserving cooperative object classification for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2022, 9(4): 2787–2801. doi: 10.1109/JIOT.2021.3093573
    [7] BI Renwan, XIONG Jinbo, TIAN Youliang, et al. Achieving lightweight and privacy-preserving object detection for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2023, 10(3): 2314–2329. doi: 10.1109/JIOT.2022.3212464
    [8] ZAWAD S, ALI A, CHEN Pinyu, et al. Curse or redemption? How data heterogeneity affects the robustness of federated learning[C]. The 35th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021: 10807–10814.
    [9] ZHAI Kun, REN Qiang, WANG Junli, et al. Byzantine-robust federated learning via credibility assessment on non-IID data[J]. arXiv: 2109.02396, 2021.
    [10] LI Liping, XU Wei, CHEN Tianyi, et al. RSA: Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 1544–1551.
    [11] ZHANG Chengliang, LI Suyi, XIA Junzhe, et al. BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning[C]. The 2020 USENIX Conference on Usenix Annual Technical Conference, Boston, USA, 2020: 33.
    [12] FU Anmin, ZHANG Xianglong, XIONG Naixue, et al. VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3316–3326. doi: 10.1109/TII.2020.3036166
    [13] SO J, GÜLER B, and AVESTIMEHR A S. Byzantine-resilient secure federated learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2168–2181. doi: 10.1109/JSAC.2020.3041404
    [14] LIU Xiaoyuan, LI Hongwei, XU Guowen, et al. Privacy-enhanced federated learning against poisoning adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4574–4588. doi: 10.1109/TIFS.2021.3108434
    [15] HSIEH K, HARLAP A, VIJAYKUMAR N, et al. Gaia: Geo-distributed machine learning approaching LAN speeds[C]. The 14th USENIX Conference on Networked Systems Design and Implementation, Boston, USA, 2017: 629–647.
    [16] LI Yiran, LI Hongwei, XU Guowen, et al. Efficient privacy-preserving federated learning with unreliable users[J]. IEEE Internet of Things Journal, 2021, 9(13): 11590–11603. doi: 10.1109/JIOT.2021.3130115
    [17] ZHU Wanchuang, ZHAO B Z H, LUO S, et al. MANDERA: Malicious node detection in federated learning via ranking[J]. arXiv: 2110.11736, 2021.
    [18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [19] XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv: 1708.07747, 2017.
    [20] WANG Hao, KAPLAN Z, NIU Di, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1698–1707.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  332
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2023-01-15
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回