高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型

殷礼胜 刘攀 孙双晨 吴洋洋 施成 何怡刚

殷礼胜, 刘攀, 孙双晨, 吴洋洋, 施成, 何怡刚. 基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型[J]. 电子与信息学报, 2023, 45(12): 4499-4508. doi: 10.11999/JEIT221172
引用本文: 殷礼胜, 刘攀, 孙双晨, 吴洋洋, 施成, 何怡刚. 基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型[J]. 电子与信息学报, 2023, 45(12): 4499-4508. doi: 10.11999/JEIT221172
YIN Lisheng, LIU Pan, SUN Shuangchen, WU Yangyang, SHI Cheng, HE Yigang. Traffic Flow Combined Prediction Model Based on Complementary Ensemble Empirical Mode Decomposition and Bidirectional Gated Recurrent Unit Optimized by Improved Sparrow Search Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4499-4508. doi: 10.11999/JEIT221172
Citation: YIN Lisheng, LIU Pan, SUN Shuangchen, WU Yangyang, SHI Cheng, HE Yigang. Traffic Flow Combined Prediction Model Based on Complementary Ensemble Empirical Mode Decomposition and Bidirectional Gated Recurrent Unit Optimized by Improved Sparrow Search Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4499-4508. doi: 10.11999/JEIT221172

基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型

doi: 10.11999/JEIT221172
基金项目: 国家自然科学基金(62073114, 6207022417),安徽省自然科学基金(JZ2021AKZR0344)
详细信息
    作者简介:

    殷礼胜:男,博士,副教授,研究方向为复杂系统建模、交通流预测等

    刘攀:男,硕士生,研究方向为智能交通、时空数据挖掘

    孙双晨:男,硕士,研究方向为非线性时间序列预测、智能控制系统

    吴洋洋:男,硕士生,研究方向为机器学习、交通流量预测

    施成:男,硕士生,研究方向为交通流预测、复杂系统建模

    何怡刚:男,博士,教授,研究方向为轨道交通研究、通信信道建模与检测等

    通讯作者:

    刘攀 15151684768@163.com

  • 中图分类号: TN911.7; U491.1

Traffic Flow Combined Prediction Model Based on Complementary Ensemble Empirical Mode Decomposition and Bidirectional Gated Recurrent Unit Optimized by Improved Sparrow Search Algorithm

Funds: The National Natural Science Foundation of China (62073114, 6207022417), The Natural Science Foundation of Anhui Province (JZ2021AKZR0344)
  • 摘要: 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。
  • 图  1  交通流量左边界局部特征延拓示意图

    图  2  改进CEEMD-ISSA-BiGRU短时交通流组合预测模型结构及其流程图

    图  3  优化前后左、右边界局部特征对比曲线

    图  4  各交通流量分量预测结果曲线

    图  5  各预测模型预测值与实际值的预测曲线对比

    图  6  各预测模型预测值与实际值的预测曲线对比

    图  7  交通流量时序点1—时序点20片段各预测曲线局部对比

    表  1  仿真参数设置

    仿真参数参数值ISSA仿真参数参数值
    信噪比$ {\text{Nstd}} $ 0.2 dB初始权重${w_{\rm{b}}}$0.9
    噪声添加次数$ {\text{NE}} $500 次终止权重${w_{\rm{e}}}$0.4
    最大迭代次数$ {\text{iter}} $2 000 次麻雀种族数量$ {\text{Np}} $50 个
    模态分量总数$ m $9 个最大迭代次数$ {\text{ite}}{{\text{r}}_M} $100 次
    学习率$ {\text{lr}} $0.001预警值$ {R_2} $0.5
    隐含层神经元个数${N_{{\text{ly}}}}$64 个安全值$ {\text{ST}} $0.8
    下载: 导出CSV

    表  2  各预测模型的误差对比

    基准预测模型MAEMAPE(%)RMSE该组合模型与基准模型相比各指标变化
    MAEMAPE(%)RMSE
    GRU11.4411.6895.25–7.86–8.40–61.31
    BiGRU7.388.1661.51–3.80–4.88–27.57
    SSA-BiGRU6.116.0150.44–2.53–2.73–16.50
    CEEMD-ISSA-BiGRU4.043.8437.43–0.46–0.56–3.49
    文献[4]5.455.7447.98–1.87–2.46–14.04
    文献[1]5.024.5840.74–1.44–1.30–6.80
    改进CEEMD-ISSA-BiGRU(本文)3.583.2833.94
    下载: 导出CSV

    表  3  PeMSD8数据集下预测模型的误差对比

    基准预测模型MAEMAPE(%)RMSE该组合模型与基准模型相比各指标变化
    MAEMAPE(%)RMSE
    文献[4]18.2211.6127.86–2.92–1.59–2.83
    文献[1]16.1310.3326.74–0.83–0.31–1.71
    改进CEEMD-ISSA-BiGRU(本文)15.3010.0225.03
    下载: 导出CSV
  • [1] 殷礼胜, 魏帅康, 孙双晨, 等. 基于FEEMD-SAPSO-BiLSTM组合模型的短时交通流预测[J]. 电子测量与仪器学报, 2021, 35(10): 72–81. doi: 10.13382/j.jemi.B2103878

    YIN Lisheng, WEI Shuaikang, SUN Shuangchen, et al. Short-term traffic flow forecast based on FEEMD-SAPSO-BiLSTM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 72–81. doi: 10.13382/j.jemi.B2103878
    [2] QU Zhaowei, LI Haitao, LI Zhihui, et al. Short-term traffic flow forecasting method with M-B-LSTM hybrid network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 225–235. doi: 10.1109/TITS.2020.3009725
    [3] 陈如清, 李嘉春, 俞金寿. 基于FWADE-ELM的短时交通流预测方法[J]. 控制与决策, 2021, 36(4): 925–932. doi: 10.13195/j.kzyjc.2019.1103

    CHEN Ruqing, LI Jiachun, and YU Jinshou. Short-term traffic flow forecasting based on hybrid FWADE-ELM[J]. Control and Decision, 2021, 36(4): 925–932. doi: 10.13195/j.kzyjc.2019.1103
    [4] 王博文, 王景升, 朱茵, 等. 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38(11): 126–133. doi: 10.3969/j.issn.1002-0268.2021.11.015

    WANG Bowen, WANG Jingsheng, ZHU Yin, et al. Study on short-term traffic volume prediction model based on ARMA-SVR[J]. Journal of Highway and Transportation Research and Development, 2021, 38(11): 126–133. doi: 10.3969/j.issn.1002-0268.2021.11.015
    [5] 于德新, 邱实, 周户星, 等. 基于GRU-RNN模型的交叉口短时交通流预测研究[J]. 公路工程, 2020, 45(4): 109–114. doi: 10.19782/j.cnki.1674-0610.2020.04.018

    YU Dexin, QIU Shi, ZHOU Huxing, et al. Research on short-term traffic flow prediction of intersections based on GRU-RNN model[J]. Highway Engineering, 2020, 45(4): 109–114. doi: 10.19782/j.cnki.1674-0610.2020.04.018
    [6] 聂铃, 张剑, 胡茂政. 基于CEEMDAN分解的短时交通流组合预测[J]. 计算机工程与应用, 2022, 58(11): 279–286. doi: 10.3778/j.issn.1002-8331.2106-0305

    NIE Ling, ZHANG Jian, and HU Maozheng. Short-term traffic flow combination prediction based on CEEMDAN decomposition[J]. Computer Engineering and Applications, 2022, 58(11): 279–286. doi: 10.3778/j.issn.1002-8331.2106-0305
    [7] LIU Hui, ZHANG Xinyu, YANG Yuxiang, et al. Hourly traffic flow forecasting using a new hybrid modelling method[J]. Journal of Central South University, 2022, 29(4): 1389–1402. doi: 10.1007/s11771-022-5000-2
    [8] YANG Haofan and CHEN Y P P. Hybrid deep learning and empirical mode decomposition model for time series applications[J]. Expert Systems with Applications, 2019, 120: 128–138. doi: 10.1016/j.eswa.2018.11.019
    [9] HAN Tian, LIU Qiannan, ZHANG Li, et al. Fault feature extraction of low speed roller bearing based on Teager energy operator and CEEMD[J]. Measurement, 2019, 138: 400–408. doi: 10.1016/j.measurement.2019.02.053
    [10] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1–12. doi: 10.3778/j.issn.1002-8331.2006-0291

    LI Yali, WANG Shuqin, CHEN Qianru, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1–12. doi: 10.3778/j.issn.1002-8331.2006-0291
    [11] BAO Kexin, BI Jinqiang, GAO Miao, et al. An improved ship trajectory prediction based on AIS data using MHA-BiGRU[J]. Journal of Marine Science and Engineering, 2022, 10(6): 804. doi: 10.3390/jmse10060804
    [12] DING Yunfei, CHEN Zijun, ZHANG Hongwei, et al. A short-term wind power prediction model based on CEEMD and WOA-KELM[J]. Renewable Energy, 2022, 189: 188–198. doi: 10.1016/j.renene.2022.02.108
    [13] MA Yangling, LUO Yixin, and YANG Zhouwang. PCFNet: Deep neural network with predefined convolutional filters[J]. Neurocomputing, 2020, 382: 32–39. doi: 10.1016/j.neucom.2019.11.075
    [14] ZHANG Yituo, LI Chaolin, JIANG Yiqi, et al. Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model[J]. Journal of Cleaner Production, 2022, 354: 131724. doi: 10.1016/j.jclepro.2022.131724
    [15] LIU Die, BAO Yihao, HE Yingying, et al. A data loss recovery technique using EMD-BiGRU algorithm for structural health monitoring[J]. Applied Sciences, 2021, 11(21): 10072. doi: 10.3390/app112110072
    [16] 张训杰, 张敏, 李贤均. 基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别[J]. 振动与冲击, 2021, 40(23): 194–201,207. doi: 10.13465/j.cnki.jvs.2021.23.026

    ZHANG Xunjie, ZHANG Min, and LI Xianjun. Rolling bearing fault mode recognition based on 2D image and CNN-BiGRU[J]. Journal of Vibration and Shock, 2021, 40(23): 194–201,207. doi: 10.13465/j.cnki.jvs.2021.23.026
    [17] SUN Peng, BOUKERCHE A, and TAO Yanjie. SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network[J]. Computer Communications, 2020, 160: 502–511. doi: 10.1016/j.comcom.2020.06.028
    [18] XUE Jiankai and SHEN Bo. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22–34. doi: 10.1080/21642583.2019.1708830
    [19] 桑海峰, 陈紫珍. 基于双向门控循环单元的3D人体运动预测[J]. 电子与信息学报, 2019, 41(9): 2256–2263. doi: 10.11999/JEIT180978

    SANG Haifeng and CHEN Zizhen. 3D human motion prediction based on bi-directional gated recurrent unit[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2256–2263. doi: 10.11999/JEIT180978
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  255
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回