高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线体域网物理层传输编码理论综述:低密度奇偶校验码优化设计

宋丹 许志平 洪少华 王琳

宋丹, 许志平, 洪少华, 王琳. 无线体域网物理层传输编码理论综述:低密度奇偶校验码优化设计[J]. 电子与信息学报, 2023, 45(8): 2818-2827. doi: 10.11999/JEIT221171
引用本文: 宋丹, 许志平, 洪少华, 王琳. 无线体域网物理层传输编码理论综述:低密度奇偶校验码优化设计[J]. 电子与信息学报, 2023, 45(8): 2818-2827. doi: 10.11999/JEIT221171
SONG Dan, XU Zhiping, HONG Shaohua, WANG Lin. Survey of Transmission Coding Theory on Physical Layer for Wireless Body Area Network: Optimal Design of Low-Density Parity-Check Code[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2818-2827. doi: 10.11999/JEIT221171
Citation: SONG Dan, XU Zhiping, HONG Shaohua, WANG Lin. Survey of Transmission Coding Theory on Physical Layer for Wireless Body Area Network: Optimal Design of Low-Density Parity-Check Code[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2818-2827. doi: 10.11999/JEIT221171

无线体域网物理层传输编码理论综述:低密度奇偶校验码优化设计

doi: 10.11999/JEIT221171
基金项目: 国家自然科学基金(61671395),福建省自然科学基金(2020J01003),福建省中青年教师教育科研项目(JAT220182)
详细信息
    作者简介:

    宋丹:女,博士生,研究方向为联合信源信道编码

    许志平:男,讲师,研究方向为联合信源信道译码

    洪少华:男,副教授,研究方向为信息论与编码、非线性信号处理

    王琳:男,教授,研究方向为信息论与编码、宽带无线通信

    通讯作者:

    王琳 wanglin@xmu.edu.cn

  • 中图分类号: TN911.22

Survey of Transmission Coding Theory on Physical Layer for Wireless Body Area Network: Optimal Design of Low-Density Parity-Check Code

Funds: The National Natural Science Foundation of China (61671395), The Natural Science Foundation of Fujian Province (2020J01003), Fujian Province Young and Middleaged Teacher Education Research Project (JAT220182)
  • 摘要: 面向无线体域网(WBAN)传输环境,该文主要论述信道编码与联合信源信道编码系统的码字设计。针对物理层的低功耗和高可靠传输需求,从低密度奇偶校验(LDPC)码的优化设计角度展开,主要在信道模型分类、传输系统构建、技术挑战与解决方案、信道适配性编码设计这4个层面进行梳理和总结。最后,对WBAN环境下LDPC码优化设计的未来研究工作进行展望,为构建下一代通信技术提供参考。
  • 图  1  WBAN信道模型节点分布及分类

    图  2  面向WBAN信道的PHY层传输系统设计

    图  3  使用NGA方法修正EXIT算法[9]

    图  4  韦布尔运动信道在4种分布下,优化公用码型与现有DE码型的BER性能比较[10]

    图  5  体内信道的MDCSK, MQAM和BPSK调制方案比较[9]

    表  1  信道模型及传输场景分类[7]

    信道模型场景标记具体传输场景描述
    CM1S1植入节点→植入节点
    CM2S2植入节点→体表节点
    CM2S3植入节点→体外节点
    CM3S4体表节点→体表节点(视距传输)
    CM3S5体表节点→体表节点(非视距传输)
    CM4S6体表节点→体外节点(视距传输)
    CM4S7体表节点→体外节点(非视距传输)
    下载: 导出CSV

    表  2  人体静止状态下体表节点发送信息通过体表信道模型拟合的概率密度函数[7]

    体表节点的位置概率密度函数分布体表节点的位置概率密度函数分布
    右侧腕部正态分布右侧上臂对数正态分布
    头部韦布尔分布右耳正态分布
    肩部对数正态分布胸部对数正态分布
    右侧肋骨对数正态分布左侧腰部正态分布
    右侧大腿对数正态分布右脚踝对数正态分布
    下载: 导出CSV

    表  3  人体运动状态下体表节点发送信息通过体表信道模型拟合的概率密度函数[7]

    体表节点位置慢速行走上下蹲起体表节点位置慢速行走上下蹲起
    右侧腕部韦布尔分布韦布尔分布胸部对数正态分布韦布尔分布
    右侧上臂韦布尔分布韦布尔分布右侧肋骨对数正态分布韦布尔分布
    头部对数正态分布对数正态分布左侧腰部对数正态分布韦布尔分布
    右耳对数正态分布韦布尔分布右侧大腿对数正态分布韦布尔分布
    肩部韦布尔分布韦布尔分布右脚踝韦布尔分布韦布尔分布
    下载: 导出CSV
  • [1] QADRI Y A, NAUMAN A, BIN ZIKRIA Y, et al. The future of Healthcare Internet of Things: A survey of emerging technologies[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1121–1167. doi: 10.1109/COMST.2020.2973314
    [2] 2022中国AIoT产业全景图谱报告[R]. 物联网智库, 2022.

    2022 China AIoT industry panorama report[R]. IoT Think Tank, 2022.
    [3] 健康物联网白皮书[R]. 北京: 中国电子技术标准化研究院, 2020.

    Health IoT white paper[R]. Beijing: China Electronics Standardization Institute, 2020.
    [4] SAKKATTU H and PRASAD D. Performance evaluation of IEEE 802.15. 6 in wireless body area networks[C]. 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Msyuru, India, 2018: 670–674.
    [5] MUCCHI L, JAYOUSI S, CAPUTO S, et al. Performance of wireless body area networks for health: ETSI SmartBAN or Bluetooth?[C]. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 2021: 1–4.
    [6] NGUYEN H T and NGUYEN T V. Energy-efficient and low complexity channel coding for wireless body area networks[C]. 2018 5th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 2018: 265–269.
    [7] FOERSTER J R. Channel modeling subcommittee report[R]. IEEE 802. 15 workgroup official website, 2003.
    [8] SONG Dan, WANG Lin, CHEN Qiwang, et al. Optimal design of joint protomatrix for DP-LDPC codes-based JSCC system over on-body channel[J]. IEEE Access, 2021, 9: 33091–33101. doi: 10.1109/ACCESS.2021.3061134
    [9] SONG Dan, WANG Lin, XU Zhiping, et al. Joint code rate compatible design of DP-LDPC code pairs for joint source channel coding over implant-to-external channel[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5526–5540. doi: 10.1109/TWC.2022.3141729
    [10] SONG Dan, REN Jinkai, WANG Lin, et al. Designing a common DP-LDPC code pair for variable on-body channels[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9596–9609. doi: 10.1109/TWC.2022.3178207
    [11] CAI Guofa, FANG Yi, CHEN Pingping, et al. Design of an MISO-SWIPT-aided code-index modulated multi-carrier M-DCSK system for e-Health IoT[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(2): 311–324. doi: 10.1109/JSAC.2020.3020603
    [12] XU Yihan, YU Gang, and YONG Y T. Deep reinforcement learning-based resource scheduling strategy for reliability-oriented wireless body area networks[J]. IEEE Sensors Letters, 2021, 5(1): 1–4. doi: 10.1109/LSENS.2020.3044337
    [13] 3rd Generation Partnership Project. 3GPP TS 38. 201[S]. 3GPP Organizational Partners’ Publications Offices, 2017.
    [14] GALLAGER R. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21–28. doi: 10.1109/TIT.1962.1057683
    [15] 吕毅博, 胡伟, 王琳. Beyond-BP译码算法综述: 原理与应用[J]. 电子与信息学报, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288

    LÜ Yibo, HU Wei, and WANG Lin. Survey of beyond-BP decoding algorithms: Theory and applications[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288
    [16] SAITO A and AOYAGI T. Development of a synchronous measurement system for WBAN channel modeling considering human body motion[C]. 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, USA, 2022: 1–6.
    [17] 石晶晶, 刘力嘉, 韩福晔, 等. 人体通信频段体内至体表信道特性分析与建模[J]. 电子与信息学报, 2022, 44(5): 1819–1827. doi: 10.11999/JEIT210267

    SHI Jingjing, LIU Lijia, HAN Fuye, et al. In-body to on-body channel characteristics analysis and modeling in human body communication frequency band[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1819–1827. doi: 10.11999/JEIT210267
    [18] GENG Yishuang, WAN Yadong, HE Jie, et al. An empirical channel model for the effect of human body on ray tracing[C]. 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 2013: 47–52.
    [19] WANG Qianqian, GUAN Quansheng, CHENG Julian, et al. A splitting-detection joint-decision receiver for ultrasonic intra-body communications[J]. IEEE Transactions on Communications, 2021, 69(6): 3586–3597. doi: 10.1109/TCOMM.2021.3064967
    [20] CHAMAANI S, NECHAYEV Y I, HALL P S, et al. In-body to off-body channel modeling[C]. The 2010 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2010: 609–612.
    [21] SEWAILEM M F and BAKLIZI A. Inference for the log-logistic distribution based on an adaptive progressive type-II censoring scheme[J]. Cogent Mathematics & Statistics, 2019, 6(1): 1684228. doi: 10.1080/25742558.2019.1684228
    [22] 金添, 何元, 李新羽, 等. 超宽带雷达人体行为感知研究进展[J]. 电子与信息学报, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044

    JIN Tian, HE Yuan, LI Xinyu, et al. Advances in human activity sensing using ultra-wide band radar[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1147–1155. doi: 10.11999/JEIT211044
    [23] NCSS Statistical Software: Distribution Weibull fitting[EB/OL]. https://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/NCSS/Distribution-Weibull-Fitting.pdf.
    [24] TEN BRINK S, KRAMER G, and ASHIKHMIN A. Design of low-density parity-check codes for modulation and detection[J]. IEEE Transactions on Communications, 2004, 52(4): 670–678. doi: 10.1109/TCOMM.2004.826370
    [25] TEN BRINK S. Convergence behavior of iteratively decoded parallel concatenated codes[J]. IEEE Transactions on Communications, 2001, 49(10): 1727–1737. doi: 10.1109/26.957394
    [26] FLIZIKOWSKI A, HOLUBOWICZ W, PRZYBYSZEWSKI M, et al. Admission control and system capacity assessment of WiMAX with ACM and nb-LDPC codes simulation study with ViMACCS ns2 patch[C]. 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, Australia, 2010: 1077–1084.
    [27] GROSA P, DOS SANTOS A F, LENTMAIER M, et al. Application of protograph-based LDPC codes for UWB short range communication[C]. 2010 IEEE International Conference on Ultra-Wideband, Nanjing, China, 2010: 1–4.
    [28] DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity-approaching protograph codes[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 876–888. doi: 10.1109/JSAC.2009.090806
    [29] SANSODA B, CHOOMCHUAY S, TIMAKUL S, et al. Performance evaluation of LDPC codes on patterned WBAN data[C]. TENCON 2014 - 2014 IEEE Region 10 Conference, Bangkok, Thailand, 2014: 1–4.
    [30] CHEN Pingping, SHI Long, FANG Yi, et al. A coded DCSK modulation system over Rayleigh fading channels[J]. IEEE Transactions on Communications, 2018, 66(9): 3930–3942. doi: 10.1109/TCOMM.2018.2827032
    [31] CHEN Qiwang and WANG Lin. Design and analysis of joint source channel coding schemes over non-standard coding channels[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5369–5380. doi: 10.1109/TVT.2020.2984235
    [32] Industrial IOT Artificial Intelligence Framework[R]. Industry IoT Consortium, 2022.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  485
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-12-08
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回