高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应蜂鸟算法的飞行自组网拓扑优化

刘琰 赵海涛 张姣 龚广伟 潘筱茜 陈海涛 魏急波

刘琰, 赵海涛, 张姣, 龚广伟, 潘筱茜, 陈海涛, 魏急波. 基于自适应蜂鸟算法的飞行自组网拓扑优化[J]. 电子与信息学报, 2023, 45(10): 3685-3693. doi: 10.11999/JEIT221165
引用本文: 刘琰, 赵海涛, 张姣, 龚广伟, 潘筱茜, 陈海涛, 魏急波. 基于自适应蜂鸟算法的飞行自组网拓扑优化[J]. 电子与信息学报, 2023, 45(10): 3685-3693. doi: 10.11999/JEIT221165
LIU Yan, ZHAO Haitao, ZHANG Jiao, GONG Guangwei, PAN Xiaoqian, CHEN Haitao, WEI Jibo. Topology Optimization Based on Adaptive Hummingbird Algorithm in Flying Ad hoc Networks[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3685-3693. doi: 10.11999/JEIT221165
Citation: LIU Yan, ZHAO Haitao, ZHANG Jiao, GONG Guangwei, PAN Xiaoqian, CHEN Haitao, WEI Jibo. Topology Optimization Based on Adaptive Hummingbird Algorithm in Flying Ad hoc Networks[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3685-3693. doi: 10.11999/JEIT221165

基于自适应蜂鸟算法的飞行自组网拓扑优化

doi: 10.11999/JEIT221165
基金项目: 国家自然科学基金(61931020, 62001483, 62171449)
详细信息
    作者简介:

    刘琰:男,硕士,研究方向为无线自组织网络、智能优化算法

    赵海涛:男,教授,研究方向为认知无线网络、自组织网络、无人机通信

    张姣:女,讲师,研究方向为无线通信与边缘计算

    龚广伟:男,博士,研究方向为认知通信网络技术

    潘筱茜:女,硕士,研究方向为智能抗干扰

    陈海涛:男,硕士,研究方向为智能通信与认知无线网络、人工智能

    魏急波:男,教授,研究方向为通信信号处理与通信网络

    通讯作者:

    赵海涛 haitaozhao@nudt.edu.cn

  • 中图分类号: TN919

Topology Optimization Based on Adaptive Hummingbird Algorithm in Flying Ad hoc Networks

Funds: The National Natural Science Foundation of China (61931020, 62001483, 62171449)
  • 摘要: 针对飞行自组网(FANET)中无人机(UAVs)快速移动造成的网络拓扑管理困难问题,考虑实际场景中无人机位置变化引起的可用信道差异,该文提出一种自适应蜂鸟算法对网络拓扑进行优化。首先,建立一个针对分簇结构的无人机拓扑模型,并且形成一个以最小化簇数量、负载偏差和簇移动度为目标的优化问题。其次,通过调节人工蜂鸟的觅食动作、加入扰动变异的方式,提出寻优能力更强的自适应蜂鸟算法(ADHA)。然后,设计合理的蜂鸟个体编码方式,将拓扑优化的决策过程转化为自适应蜂鸟算法的寻优过程。最后,通过仿真验证所提算法的收敛性,并与基于其他群智能优化算法的拓扑优化方法进行对比。实验结果表明,所提算法得到的拓扑优化策略不仅能够有效减少网络拓扑的簇数量,而且能够得到负载均衡、结构稳定的簇群。
  • 图  1  通信场景示例

    图  2  区域划分

    图  3  编码映射示例

    图  4  拓扑优化流程图

    图  5  节点数量变化对不同算法分簇结果的影响

    图  6  总信道数量变化对算法分簇结果的影响

    图  7  最大通信半径变化对算法分簇结果的影响

    表  1  仿真参数设置

    仿真参数参数数值
    部署区域50 km×50 km
    无人机数量50~300
    最大通信半径5~15 km
    总信道数量5, 10, 15, 20
    移动模型Random-way point
    移动速度30~50 m/s
    下载: 导出CSV

    表  2  算法参数设置

    算法参数设置
    SSAPD = 20%, ST = 0.8, SD = 10%
    WHOPC = 0.2, PS = 0.13
    AHAMC = 0.5N
    ADHAMC = 0.5N, Pmax = 0.5, Pmin = 0.1
    下载: 导出CSV
  • [1] WANG Haijun, ZHAO Haitao, ZHANG Jiao, et al. Survey on unmanned aerial vehicle networks: A cyber physical system perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1027–1070. doi: 10.1109/COMST.2019.2962207
    [2] 赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601

    ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
    [3] KIM D Y and LEE J W. Joint mission assignment and topology management in the mission-critical FANET[J]. IEEE Internet of Things Journal, 2020, 7(3): 2368–2385. doi: 10.1109/JIOT.2019.2958130
    [4] CHOI H H, MUY S, and LEE J R. Geometric analysis-based cluster head selection for sectorized wireless powered sensor networks[J]. IEEE Wireless Communications Letters, 2021, 10(3): 649–653. doi: 10.1109/LWC.2020.3044902
    [5] YANG Xinwei, YU Tianqi, CHEN Zhongyue, et al. An improved weighted and location-based clustering scheme for flying ad hoc networks[J]. Sensors, 2022, 22(9): 3236. doi: 10.3390/s22093236
    [6] KHANMOHAMMADI E, BAREKATAIN B, and QUINTANA A A. An enhanced AHP-TOPSIS-based clustering algorithm for high-quality live video streaming in flying ad hoc networks[J]. The Journal of Supercomputing, 2021, 77(9): 10664–10698. doi: 10.1007/s11227-021-03645-3
    [7] RAZA A, KHAN M F, MAQSOOD M, et al. Adaptive k-means clustering for flying ad-hoc networks[J]. KSII Transactions on Internet and Information Systems (TIIS), 2020, 14(6): 2670–2685. doi: 10.3837/tiis.2020.06.019
    [8] PANDEY A, SHUKLA P K, and AGRAWAL R. Salp swarm optimization-based clustering algorithm (SSOCA) in adaptive FANET to improve QoS for disaster response operations[J]. Wireless Personal Communications, 2022, 126(3): 2801–2824. doi: 10.1007/s11277-022-09842-4
    [9] BHARANY S, SHARMA S, BHATIA S, et al. Energy efficient clustering protocol for FANETS using moth flame optimization[J]. Sustainability, 2022, 14(10): 6159. doi: 10.3390/su14106159
    [10] SEFATI S S, HALUNGA S, and FARKHADY R Z. Cluster selection for load balancing in flying ad hoc networks using an optimal low-energy adaptive clustering hierarchy based on optimization approach[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(8): 1344–1356. doi: 10.1108/AEAT-08-2021-0264
    [11] SUN Guanyu, QIN Danyang, LAN Tingting, et al. Research on clustering routing protocol based on improved PSO in FANET[J]. IEEE Sensors Journal, 2021, 21(23): 27168–27185. doi: 10.1109/JSEN.2021.3117496
    [12] KHAN A, AFTAB F, and ZHANG Zhongshan. BICSF: Bio-inspired clustering scheme for FANETs[J]. IEEE Access, 2019, 7: 31446–31456. doi: 10.1109/ACCESS.2019.2902940
    [13] ZHAO Weiguo, WANG Liying, and MIRJALILI S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114194. doi: 10.1016/j.cma.2021.114194
    [14] YOUNES O S and ALBALAWI U A. Analysis of route stability in mobile multihop networks under random waypoint mobility[J]. IEEE Access, 2020, 8: 168121–168136. doi: 10.1109/ACCESS.2020.3023142
    [15] XUE Jiankai and SHEN Bo. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22–34. doi: 10.1080/21642583.2019.1708830
    [16] NARUEI I and KEYNIA F. Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering with Computers, 2022, 38(4): 3025–3056. doi: 10.1007/s00366-021-01438-z
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  188
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2023-04-16
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回