高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于循环密文的格密码模板攻击方法

严迎建 常雅静 朱春生 刘燕江

严迎建, 常雅静, 朱春生, 刘燕江. 基于循环密文的格密码模板攻击方法[J]. 电子与信息学报, 2023, 45(12): 4530-4538. doi: 10.11999/JEIT221164
引用本文: 严迎建, 常雅静, 朱春生, 刘燕江. 基于循环密文的格密码模板攻击方法[J]. 电子与信息学报, 2023, 45(12): 4530-4538. doi: 10.11999/JEIT221164
YAN Yingjian, CHANG Yajing, ZHU Chunsheng, LIU Yanjiang. A Lattice Cipher Template Attack Method Based on Recurrent Cryptography[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4530-4538. doi: 10.11999/JEIT221164
Citation: YAN Yingjian, CHANG Yajing, ZHU Chunsheng, LIU Yanjiang. A Lattice Cipher Template Attack Method Based on Recurrent Cryptography[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4530-4538. doi: 10.11999/JEIT221164

基于循环密文的格密码模板攻击方法

doi: 10.11999/JEIT221164
基金项目: 国家自然科学基金(61832018)
详细信息
    作者简介:

    严迎建:男,博士,教授,研究方向为安全专用芯片设计技术、侧信道分析等

    常雅静:女,硕士生,研究方向为安全专用芯片设计技术、侧信道分析、后量子密码等

    朱春生:男,博士,讲师,研究方向为安全专用芯片设计技术、侧信道分析和深度学习等

    刘燕江:男,博士后,研究方向为安全专用芯片设计技术、侧信道分析和硬件木马检测等

    通讯作者:

    常雅静 changyajingMAG@163.com

  • 中图分类号: TN918; TP309

A Lattice Cipher Template Attack Method Based on Recurrent Cryptography

Funds: The National Natural Science Foundation of China (61832018)
  • 摘要: 该文分析了格密码解封装过程存在的能量泄露,针对消息解码操作提出一种基于模板与密文循环特性的消息恢复方法,该方法采用汉明重量模型与归一化类间方差(NICV)方法对解码字节的中间更新状态构建模板,并利用密文循环特性构造特殊密文,结合算法运算过程中产生的能量泄露,实现了对格密码中秘密消息和共享密钥的恢复。该文以Saber算法及其变体为例对提出的攻击方法在ChipWhisperer平台上进行了验证,结果表明,该攻击方法可以成功还原封装阶段的秘密消息和共享密钥,在预处理阶段仅需900条能量迹即可完成对模板的构建,共需要32条能量迹完成秘密消息的恢复。在未增加信噪比(SNR)条件下,消息恢复成功率达到66.7%,而在合适信噪比条件下,消息恢复成功率达到98.43%。
  • 图  1  Saber KEM解封装过程结构图

    图  2  Saber POLmsg2BS汇编代码片段

    图  3  实验环境设置图

    图  4  Saber KEM解封装过程部分能量迹

    图  5  POLmsg2BS函数能量迹

    图  6  Saber KEM解码阶段部分TVLA结果

    图  7  Saber KEM解码阶段部分NICV结果

    图  8  Saber KEM消息恢复成功率

    算法1 Saber PKE解密算法
     输入:私钥$ s \in {B^*} $
        密文$c = ({c_m},{\boldsymbol{b}}') \in {B^{\text{*} } }$
     输出:解密消息$ m' \in {B^{32}} $
     (1) $v = {\boldsymbol{b}}{'^{\rm{T} } }(s\text{mod} p) \in {R_p}$
     (2) $ m' = ((v + {h_2} - {2^{{\varepsilon _p} - {\varepsilon _T}}}{c_m})\text{mod} p) > > ({\varepsilon _p} - 1) \in {R_2} $
     (3) 返回$ m' $
    下载: 导出CSV
    算法2 Saber KEM解封装算法
     输入:私钥${{\rm{sk}}_{{\rm{KEM}}} } = (z,{\rm{pkh,pk}},s) \in {B^{\text{*} } }$
        密文$ c \in {B^{\text{*}}} $
     输出:共享密钥$ K \in {B^{32}} $
     (1) $m' = {\rm{Saber}}\; {\rm{PKE.Dec}}(s,c)$
     (2) $(K',r') = G({\rm{pkh}},m')$
     (3) $c' = {\rm{Saber} }\; {\rm{PKE.Enc} }({\rm{pk}},m';r')$
     (4) 若 $ c = c' $ 则返回$K = {\rm{KDF}}(K'||H(c))$
     (5) 否则返回$K = {\rm{KDF}}(z||H(c))$
    下载: 导出CSV
    算法3 Saber POLmsg2BS
     (1) void POLmsg2BS(uint8_t bytes[SABER_KEYBYTES],
       const poly *data) {
     (2)   size_t t, i, j;
     (3)   for (j = 0; j < SABER_KEYBYTES; j++) {
     (4)     bytes[j] = 0;
     (5)     for (i = 0; i < 8; i++) {
     (6)       t = (data->coeffs[j × 8 + i] & 0x01);
     (7)       bytes[j] |= t << i;
     (8)    }
     (9)   }
     (10) }
    下载: 导出CSV
    算法4 针对Saber算法的消息恢复方法
     预处理阶段
     (1) for j from 0 by 1 to 7 do
     (2)  for k from 0 by 1 to j+1 do
     (3)   $T_{\left( {0,j} \right)}^k = {{\rm{Saber}}} {{\rm{KEM}}} .{\rm{Dec}}({\rm{CT}}_{\left( {0,j} \right)}^k)$
     (4)  end for
     (5)  ${W_j} = {{\rm{TVLA}}} (T_{(0,1)}^0,T_{\left( {0,1} \right)}^1)$
     (6)  ${P_{(0,j)} } = {\rm{NICV}}({W_j},T_{\left( {0,j} \right)}^0,\cdots,T_{\left( {0,j} \right)}^{j + 1})$
     (7)  for k from 0 by 1 to j+1 do
     (8)   $T{_{\left( {0,j} \right)}^{k'}} = T_{\left( {0,j} \right)}^k({P_{(0,j)} })$
     (9)   $r_P^k = {\text{average} }(T{_{\left( {0,j} \right)}^{k'}})$
     (10)  end for
     (11) end for
     模板匹配阶段
     (12) for i from 0 by 1 to l –1 do
     (13)  cti = 构造密文(ct, i)
     (14)  tri =Saber KEM.Dec(cti)
     (15)  for j from 0 by 1 to 7 do
     (16)   ${ {\rm{tr} }'_{(i,j)} } = { {\rm{tr} }_i}({P_{(0,j)} })$
     (17)   for k from 0 by 1 to j+1 do
     (18)    $\varGamma _{(i,j)}^k = { {\rm{SOSD} } } ({ {\rm{tr} }'_{(i,j)} },r_P^k)$
     (19)   end for
     (20)   ${{\rm{HW}}} (m[i,j]) = \min (\varGamma _{(i,j)}^k)$
     (21)   $m{[i]_j} = {\text{Recover} }({{\rm{HW}}} (m[i,j]),{{\rm{HW}}} (m[i,j] - 1))$
     (22)  end for
     (23) end for
    下载: 导出CSV

    表  1  不同方案实验结果

    文献应用算法攻击点预处理能量迹(条)攻击能量迹(条)总能量迹(条)成功率(%)
    文献[9]*Kyber解码20025645699.00
    12 8003225 632
    文献[10]NewHope编码25 6001(32个子段)25 60196.00
    文献[11]Saber编码8 000(训练)+1 000(验证)19 00196.71
    本文LightSaber解码9003293298.62
    Saber9003293298.43
    FireSaber9003293298.39
    *:分别以比特和字节为单位进行秘密消息恢复
    下载: 导出CSV

    表  2  不同SNR条件下恢复秘密消息的成功率

    实验重复测量次数成功率*(%)
    实验1167.50/66.71/66.68
    实验2290.00/89.67/89.63
    实验3495.81/95.64/95.64
    实验4697.36/97.22/97.20
    实验5898.62/98.43/98.37
    实验61098.62/98.43/98.39
    实验71298.62/98.43/98.39
    *:成功率分别为LightSaber/Saber/FireSaber
    下载: 导出CSV
  • [1] 李子臣, 谢婷, 张卷美. 基于RLWE问题的后量子口令认证密钥交换协议[J]. 电子学报, 2021, 49(2): 260–267. doi: 10.12263/DZXB.20190101

    LI Zichen, XIE Ting, and ZHANG Juanmei. Post Quantum password-based authentication key exchange protocol based on ring learning with errors problem[J]. Acta Electronica Sinica, 2021, 49(2): 260–267. doi: 10.12263/DZXB.20190101
    [2] KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. 19th Advances in Cryptology-CRYPTO’ 99, Berlin, Germany: Springer, 1999. 388–397.
    [3] 陈华, 习伟, 范丽敏, 等. 密码产品的侧信道分析与评估[J]. 电子与信息学报, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853

    CHEN Hua, XI Wei, FAN Limin, et al. Side channel analysis and evaluation on cryptographic products[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853
    [4] PRIMAS R, PESSL P, and MANGARD S. Single-trace side-channel attacks on masked lattice-based encryption[C]. 19th Cryptographic Hardware and Embedded Systems – CHES 2017, Cham, Switzerland, 2017: 513–533.
    [5] PESSL P and PRIMAS R. More practical single-trace attacks on the number theoretic transform[C]. 6th Progress in Cryptology – LATINCRYPT 2019, Cham, Switzerland, 2019: 130–149.
    [6] RAVI P, ROY S S, CHATTOPADHYAY A, et al. Generic Side-channel Attacks on CCA-secure lattice-based PKE and KEMs[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(3): 307–335. doi: 10.13154/tches.v2020.i3.307-335
    [7] AYDIN F, AYSU A, TIWARI M, et al. Horizontal side-channel vulnerabilities of post-quantum key exchange and encapsulation protocols[J]. ACM Transactions on Embedded Computing Systems, 2021, 20(6): 110. doi: 10.1145/3476799
    [8] XU Zhuang, PEMBERTON O, ROY S S, et al. Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of kyber[J]. IEEE Transactions on Computers, 2022, 71(9): 2163–2176. doi: 10.1109/TC.2021.3122997
    [9] RAVI P, BHASIN S, ROY S S, et al. Drop by Drop you break the rock - Exploiting generic vulnerabilities in Lattice-based PKE/KEMs using EM-based Physical Attacks[EB/OL]. IACR Cryptology ePrint Arch, 2020: 549.
    [10] AMIET D, CURIGER A, LEUENBERGER L, et al. Defeating NewHope with a single trace[C]. 11th Post-Quantum Cryptography - PQCrypto 2020, Cham, Switzerland, 2020: 189–205.
    [11] SIM B Y, KWON J, LEE J, et al. Single-trace attacks on message encoding in lattice-based KEMs[J]. IEEE Access, 2020, 8: 183175–183191. doi: 10.1109/ACCESS.2020.3029521
    [12] NGO K, DUBROVA E, GUO Qiao, et al. A side-channel attack on a masked IND-CCA secure saber KEM implementation[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021(4): 676–707. doi: 10.46586/tches.v2021.i4.676-707
    [13] NGO K, DUBROVA E, and JOHANSSON T. Breaking masked and shuffled CCA secure saber KEM by power analysis[C]. The 5th Workshop on Attacks and Solutions in Hardware Security, Virtual Event, Korea, 2021. 51–61.
    [14] D’ANVERS J. Saber algorithm specifications and supporting documentation[OL]. https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions. 2020.
    [15] BANERJEE A, PEIKERT C, and ROSEN A. Pseudorandom functions and lattices[C]. 31st Advances in Cryptology – EUROCRYPT 2012, Berlin, Germany, 2012. 719–737.
    [16] GOODWILL G, JUN B, JAFFE J, et al. A testing methodology for side channel resistance validation[C]. NIST Non-Invasive Attack Testing Workshop, Gaithersburg, USA, 2011: 115–136.
    [17] WELCH B L. The generalization of ‘STUDENT'S’ problem when several different population varlances are involved[J]. Biometrika, 1947, 34(1/2): 28–35. doi: 10.1093/biomet/34.1-2.28
    [18] BHASIN S, DANGER J L, GUILLEY S, et al. NICV: Normalized inter-class variance for detection of side-channel leakage[C]. 2014 International Symposium on Electromagnetic Compatibility, Tokyo, Japan, 2014. 310–313.
    [19] KANNWISCHER M J, RIJNEVELD J, SCHWABE P, et al. PQM4: Post-quantum crypto library for the ARM Cortex-M4[EB/OL]. https://github.com/mupq/pqm4, 2020.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  191
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2022-10-27
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回