高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性

李玉柏 孙迅

李玉柏, 孙迅. 基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性[J]. 电子与信息学报, 2023, 45(10): 3657-3666. doi: 10.11999/JEIT221160
引用本文: 李玉柏, 孙迅. 基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性[J]. 电子与信息学报, 2023, 45(10): 3657-3666. doi: 10.11999/JEIT221160
LI Yubai, SUN Xun. A Highly Robust Indoor Location Algorithm Using WiFi Channel State Information Based on Transfer Learning Reinforcement[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3657-3666. doi: 10.11999/JEIT221160
Citation: LI Yubai, SUN Xun. A Highly Robust Indoor Location Algorithm Using WiFi Channel State Information Based on Transfer Learning Reinforcement[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3657-3666. doi: 10.11999/JEIT221160

基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性

doi: 10.11999/JEIT221160
基金项目: 四川省重点研发计划(23ZDYF0198)
详细信息
    作者简介:

    李玉柏:男,教授,研究方向为软件无线电、移动通信与信号处理

    孙迅:男,硕士生,研究方向为室内定位与信号处理

    通讯作者:

    孙迅 xsun@std.uestc.edu.cn

  • 中图分类号: TN92

A Highly Robust Indoor Location Algorithm Using WiFi Channel State Information Based on Transfer Learning Reinforcement

Funds: Key R & D plan of Sichuan Province (23ZDYF0198)
  • 摘要: 基于信道状态信息(CSI)数据的WiFi指纹可用于室内定位。与信号强度值(RSSI)数据相比,CSI具有更高的数据信息粒度,并且可以在多个子载波上获得。当使用CSI数据进行室内定位时,相对于RSSI可以获得更好的结果。然而,无论使用RSSI还是CSI信号,在室内定位部署期间的一段时间后,室内环境通常会发生变化,并且基于测试数据的指纹数据库通常会恶化甚至失效。该文提出使用迁移学习算法来建立用于室内定位的指纹数据库。迁移学习的优势在于,可以使用较少的数据来获得更好的迁移训练结果。该文使用迁移学习来迁移指纹数据库的预测,延长指纹数据库的生命周期,并提高室内定位的鲁棒性。经过实验,1周后室内定位准确率保持在98%,两周后保持在97%。在相同成本下,该模型的生命周期和定位精度高于长短期记忆网络(LSTM)、卷积神经网络(CNN)、支持向量机(SVM)、深度神经网络(DNN)和其他定位系统。
  • 图  1  室内环境变化前后定位误差

    图  2  室内定位系统架构

    图  3  数据预处理算法流程图

    图  4  迁移学习网络架构

    图  5  CSI数据拼接

    图  6  室内环境

    图  7  CSI数据预处理算法比较

    图  8  对比RSSI与各维度下的CSI数据

    图  9  室内定位中的不同方法

    算法1 数据预处理算法
     输入:${\bf{CSI} }_{i}$, ${\rm{RS}}\mathrm{S}{\mathrm{I} }_{i}$
     输出:预处理后的${\bf{CSI} }_{i}$
     (1) for ${\bf{CSI} }_{i}$ do
     (2)   for ${\bf{CSI} }_{ij}$ do
     (3)     通过式(5)计算$ s; $
     (4)     通过式(6)修正${\bf{CSI} }_{i}$;
     (5)   end
     (6)   if ${\bf{CSI} }_{i}$ 不是最大的聚类部分 then
     (7)     删除${\bf{CSI} }_{i}$;
     (8)   end
     (9)   删除非数据子载波;
     (10)   利用PCA算法进行降维;
     (11)  end
    下载: 导出CSV
    算法2 迁移学习训练与位置预测
     输入:经过数据预处理后的训练数据${ {\bf{CSI} } } _{i}^{S}$,测试数据${\bf{CSI}}_{i}^{T}$
     输出:训练好的指纹库,预测位置
     (1) for ${{\bf{CSI}}}_{i}^{S}$ do
     (2)   输入到特征提取器以获得$ {Z}_{i}^{S}; $
     (3)   通过式(10)计算${y}_{i}^{\left(S;{M}_{{\rm{P}}}\right)}$;
     (4)   通过式(11)计算$ {L}_{\mathrm{a}} $;
     (5)   计算域间损失$ {L}_{\mathrm{d}} $;
     (6)   反向传播更新网络参数;
     (7) end
     (8) for ${\bf{CSI}} _{i}^{T}$ do
     (9)   输入到特征提取器以获得${{\boldsymbol{Z}}}_{i}^{T}$;
     (10)   通过式(10)计算${y}_{i}^{\left(T;{M}_{{\rm{P}}}\right)}$;
     (11)   输出位置预测结果。
     (12) end
    下载: 导出CSV
    算法3 网络更新算法
     输入:测试数据${\bf{C}\bf{S}{\bf{I} }}_{i}^{ {\rm{t} } }$,信标数据${\bf{C}\bf{S}{\bf{I} }}_{i}^{{\rm{b}}}$
     输出:更新后的网络
     (1) for ${\bf{C}\bf{S}{\bf{I} }}_{i}^{{\rm{t}}}$ do
     (2)   执行算法1:数据预处理算法;
     (3)   if $D\left(\bf{C}\bf{S}{\bf{I} }_{i}\right) < \mathrm{\delta }$且无异常值then
     (4)     作为训练数据执行算法2:迁移学习训练算法;
     (5)   end
     (6) end
     (7) for ${\bf{C}\bf{S}{\bf{I} }}_{i}^{{\rm{b}}}$ do
     (8)   执行算法1:数据预处理算法;
     (9)   作为训练数据执行算法2:迁移学习训练算法;
     (10) end
    下载: 导出CSV

    表  1  数据降维带来的精度提升(%)

    CSI_pre帧过滤提升
    第1周995247
    第2周984553
    第3周973265
    数据降维AGC补偿提升
    第1周944846
    第2周843747
    第3周762848
    下载: 导出CSV
  • [1] SADRUDDIN H, MAHMOUD A, and ATIA M M. Enhancing body-mounted LiDAR SLAM using an IMU-based pedestrian dead reckoning (PDR) model[C]. The 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, Springfield, USA, 2020: 901–904.
    [2] BAI Lu, CIRAVEGNA F, BOND R, et al. A low cost indoor positioning system using bluetooth low energy[J]. IEEE Access, 2020, 8: 136858–136871. doi: 10.1109/ACCESS.2020.3012342
    [3] CHÓLIZ J, EGUIZÁBAL M, HERNÁNDEZ-SOLANA Á, et al. Comparison of algorithms for UWB indoor location and tracking systems[C]. The 2011 IEEE 73rd Vehicular Technology Conference, Budapest, Hungary, 2011: 1–5.
    [4] LIU Fen, LIU Jing, YIN Yuqing, et al. Survey on WiFi-based indoor positioning techniques[J]. IET Communications, 2020, 14(9): 1372–1383. doi: 10.1049/iet-com.2019.1059
    [5] GAN Xingli, HUO Zhihui, SUN Lu, et al. An approach to improve the indoor positioning performance of pseudolite/UWB system with ambiguity resolution[J]. Journal of Sensors, 2022, 2022: 3962014. doi: 10.1155/2022/3962014
    [6] JEDARI E, WU Zheng, RASHIDZADEH R, et al. Wi-Fi based indoor location positioning employing random forest classifier[C]. 2015 International conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015: 1–5.
    [7] FANG S H and LIN T N. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments[J]. IEEE Transactions on Neural Networks, 2008, 19(11): 1973–1978. doi: 10.1109/TNN.2008.2005494
    [8] SHAO Wenhua, LUO Haiyong, ZHAO Fang, et al. Indoor positioning based on fingerprint-image and deep learning[J]. IEEE Access, 2018, 6: 74699–74712. doi: 10.1109/ACCESS.2018.2884193
    [9] NESSA A, ADHIKARI B, HUSSAIN F, et al. A survey of machine learning for indoor positioning[J]. IEEE Access, 2020, 8: 214945–214965. doi: 10.1109/ACCESS.2020.3039271
    [10] SEIDEL S Y and RAPPAPORT T S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(2): 207–217. doi: 10.1109/8.127405
    [11] YE Hongyun, YANG Biao, LONG Zhiqiang, et al. A method of indoor positioning by signal fitting and PDDA algorithm using BLE AOA device[J]. IEEE Sensors Journal, 2022, 22(8): 7877–7887. doi: 10.1109/JSEN.2022.3141739
    [12] WANG Mei, CHEN Zhao, ZHOU Zou, et al. Analysis of the applicability of dilution of precision in the base station configuration optimization of ultrawideband indoor TDOA positioning system[J]. IEEE Access, 2020, 8: 225076–225087. doi: 10.1109/ACCESS.2020.3045189
    [13] WANG Jingjing and PARK J. An enhanced indoor positioning algorithm based on fingerprint using fine-grained CSI and RSSI measurements of IEEE 802.11n WLAN[J]. Sensors, 2021, 21(8): 2769. doi: 10.3390/s21082769
    [14] GÖNÜLTAŞŞ E, LEI E, LANGERMAN J, et al. CSI-based multi-antenna and multi-point indoor positioning using probability fusion[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2162–2176. doi: 10.1109/TWC.2021.3109789
    [15] AYABAKAN T and KERESTECIOĞLU F. RSSI-based indoor positioning via adaptive federated Kalman filter[J]. IEEE Sensors Journal, 2022, 22(6): 5302–5308. doi: 10.1109/JSEN.2021.3097249
    [16] SILVA I, PENDÃO C, TORRES-SOSPEDRA J, et al. TrackInFactory: A tight coupling particle filter for industrial vehicle tracking in indoor environments[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(7): 4151–4162. doi: 10.1109/TSMC.2021.3091987
    [17] IBRAHIM M, TORKI M, and ELNAINAY M. CNN based indoor localization using RSS time-series[C]. 2018 IEEE Symposium on Computers and Communications, Natal, Brazil, 2018: 1044–1049.
    [18] EDEL M and KÖPPE E. Binarized-BLSTM-RNN based human activity recognition[C]. 2016 International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016: 1–7.
    [19] GAO Zhihui, GAO Yunfan, WANG Sulei, et al. CRISLoc: Reconstructable CSI fingerprinting for indoor smartphone localization[J]. IEEE Internet of Things Journal, 2021, 8(5): 3422–3437. doi: 10.1109/JIOT.2020.3022573
    [20] LI Danyang, XU Jingao, YANG Zheng, et al. Train once, locate anytime for anyone: Adversarial learning based wireless localization[C]. IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10.
    [21] GHIFARY M, KLEIJN W B, and ZHANG Mengjie. Domain adaptive neural networks for object recognition[C]. The 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, Australia, 2014: 898–904.
    [22] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
    [23] ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928
    [24] SHEORAN V, JOSHI S, and BHAYANI T R. Age and gender prediction using deep CNNs and transfer learning[C]. The 5th International Conference on Computer Vision and Image Processing, Prayagraj, India, 2020: 293–304.
    [25] ANEJA S, ANEJA N, ABAS P E, et al. Transfer learning for cancer diagnosis in histopathological images[J]. arXiv: 2112.15523, 2021.
    [26] HORRY M J, CHAKRABORTY S, PAUL M, et al. COVID-19 detection through transfer learning using multimodal imaging data[J]. IEEE Access, 2020, 8: 149808–149824. doi: 10.1109/ACCESS.2020.3016780
    [27] PATHAK Y, SHUKLA P K, TIWARI A, et al. Deep transfer learning based classification model for COVID-19 disease[J]. IRBM, 2022, 43(2): 87–92. doi: 10.1016/j.irbm.2020.05.003
    [28] ALEGRE PÉREZ J P, CELMA PUEYO S, and LÓPEZ B C. Automatic Gain Control[M]. New York: Springer, 2011.
    [29] 王迪也. 5G辅助的室内外融合定位技术研究[D]. [硕士论文], 电子科技大学, 2022.

    WANG Diye. Research on 5G-assisted indoor and outdoor fusion positioning technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
    [30] ZHANG Yong, QU Chen, and WANG Yujie. An indoor positioning method based on CSI by using features optimization mechanism with LSTM[J]. IEEE Sensors Journal, 2020, 20(9): 4868–4878. doi: 10.1109/JSEN.2020.2965590
    [31] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49–e57. doi: 10.1093/bioinformatics/btl242
    [32] SCHULZ M, WEGEMER D, and HOLLICK M. Nexmon: The c-based firmware patching framework. 2017.
    [33] GRINGOLI F, SCHULZ M, LINK J, et al. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets[C]. The 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico, 2019: 21–28.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  929
  • HTML全文浏览量:  631
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2023-02-14
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回