高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于随机几何理论的RIS辅助PD-NOMA网络物理层安全增强方法

冯琳琳 张治中 胡昊南 裴二荣 李云

冯琳琳, 张治中, 胡昊南, 裴二荣, 李云. 一种基于随机几何理论的RIS辅助PD-NOMA网络物理层安全增强方法[J]. 电子与信息学报, 2023, 45(10): 3631-3639. doi: 10.11999/JEIT221102
引用本文: 冯琳琳, 张治中, 胡昊南, 裴二荣, 李云. 一种基于随机几何理论的RIS辅助PD-NOMA网络物理层安全增强方法[J]. 电子与信息学报, 2023, 45(10): 3631-3639. doi: 10.11999/JEIT221102
FENG Linlin, ZHANG Zhizhong, HU Haonan, PEI Errong, LI Yun. An Approach of Enhancing the Physical Layer Security of RIS-assisted PD-NOMA Networks Based on Stochastic Geometry[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3631-3639. doi: 10.11999/JEIT221102
Citation: FENG Linlin, ZHANG Zhizhong, HU Haonan, PEI Errong, LI Yun. An Approach of Enhancing the Physical Layer Security of RIS-assisted PD-NOMA Networks Based on Stochastic Geometry[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3631-3639. doi: 10.11999/JEIT221102

一种基于随机几何理论的RIS辅助PD-NOMA网络物理层安全增强方法

doi: 10.11999/JEIT221102
基金项目: 国家自然科学基金(62001238, 62071077, 61901075),工业和信息化部行业专项(TC210H02P/2)
详细信息
    作者简介:

    冯琳琳:女,博士生,研究方向为无线移动通信、移动边缘计算、随机几何等

    张治中:男,教授,博士生导师,研究方向为LTE/5G/6G移动通信与信息处理、通信网测试及仪表技术、移动大数据、物联网等

    胡昊南:男,副教授,硕士生导师,研究方向为随机几何、排队论、干扰管理、异构网络、Fog-RAN和NR-U网络等

    裴二荣:男,教授,博士生导师,研究方向为认知无线电、物联网、5G和智能通信等

    李云:男,教授,博士生导师,研究方向为无线移动通信、移动边缘计算、人工智能等

    通讯作者:

    张治中 zhangzz@nuist.edu.cn

  • 中图分类号: TN92

An Approach of Enhancing the Physical Layer Security of RIS-assisted PD-NOMA Networks Based on Stochastic Geometry

Funds: The National Natural Science Foundation of China (62001238, 62071077, 61901075), The Special Project for Industry of Ministry of Industry and Information Technology of the People's Republic China (TC210H02P/2)
  • 摘要: 为提升基于非正交多址访问(NOMA)大规模雾接入网络的上行物理层安全(PLS),该文考虑了可重构智能表面(RIS)辅助无小区(CF)传输场景。基于功率域复用NOMA(PD-NOMA)并调用随机几何工具将空间效应引入所考虑网络的RIS模型设计,基于该方法来增强其PLS。该网络采用发射机-发射机对建模、Fisher-Snedecor $\mathcal{F}$模型表征复合信道,并重新设计了RIS反射模型。首先推导出所考虑网络组合信道增益的新统计特性,接着推导出RIS辅助PD-NOMA传输场景保密中断概率(SOP)的解析表达式。分析结果和仿真结果表明:该RIS设计能有效提高边缘用户信道质量,从而改变该网络NOMA用户对连续干扰消除(SIC)顺序;该RIS设计及排斥性雾节点(F-AP)部署均可增强该网络PLS,其中,基于β-Ginibre点过程(β-GPP)部署F-AP,在同等条件下,不需增加部署成本即可使SOP至多降低约2个数量级、使保密速率至多提升约$10.5\% $。
  • 图  1  基于β-GPP的RIS辅助PD-NOMA网络拓扑示例

    图  2  SOP与用户对总发射功率的关系(${\lambda _{\text{F}}} = {1 \mathord{\left/ {\vphantom {1 {{\text{(}}{{100}^2}\pi {\text{)}}}}} \right. } {{\text{(}}{{100}^2}\pi {\text{)}}}}$)

    图  3  SOP与用户对总发射功率的关系(${\lambda _{\text{F}}} = {1 \mathord{\left/ {\vphantom {1 {{\text{(}}{{100}^2}\pi {\text{)}}}}} \right. } {{\text{(}}{{100}^2}\pi {\text{)}}}}$, $N = 16$)

    图  4  SOP与用户对总发射功率的关系(${\lambda _{\text{F}}} = {1 \mathord{\left/ {\vphantom {1 {{\text{(}}{{100}^2}\pi {\text{)}}}}} \right. } {{\text{(}}{{100}^2}\pi {\text{)}}}}$, $m = 1$)

    图  5  SOP与用户对总发射功率的关系($N = 64$)

    图  6  SOP与窃听基站距主F-AP半径${r_{\text{E}}}$的关系($m = 1$, ${m_{\text{s}}} = 0.5$)

    图  7  保密速率与总发射功率的关系(${m_{\text{s}}} = 0.5$)

    图  8  保密速率与总发射功率的关系($m = 1$,${m_{\text{s}}} = 0.5$)

    图  9  协作F-AP数量不同时保密速率与总发射功率的关系

  • [1] IMT-2030 (6G)推进组. 6G典型场景和关键能力[R]. 北京: IMT-2030 (6G)推进组, 2022.

    IMT-2030 (6G) Promotion Group. 6G typical scenarios and key capabilities[R]. Beijing: IMT-2030 (6G) Promotion Group, 2022.
    [2] WANG Kunlun, ZHOU Yong, LIU Zening, et al. Online task scheduling and resource allocation for intelligent NOMA-based industrial Internet of Things[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 803–815. doi: 10.1109/JSAC.2020.2980908
    [3] WEN Xiangming, ZHANG Huiwen, ZHANG Haijun, et al. Interference pricing resource allocation and user-subchannel matching for NOMA hierarchy fog networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 467–479. doi: 10.1109/JSTSP.2019.2899238
    [4] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897
    [5] LI Yun, LIAO Chao, WANG Yong, et al. Energy-efficient optimal relay selection in cooperative cellular networks based on double auction[J]. IEEE Transactions on Wireless Communications, 2015, 14(8): 4093–4104. doi: 10.1109/TWC.2015.2416715
    [6] PANG Weina, WANG Ping, HAN Maojie, et al. Optical intelligent reflecting surface for mixed Dual-Hop FSO and beamforming-based RF system in C-RAN[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8489–8506. doi: 10.1109/TWC.2022.3166756
    [7] SHAWAQFEH M K and BADARNEH O S. Performance of mobile networks under composite $ \mathcal{F}$ fading channels[J]. Digital Communications and Networks, 2022, 8(1): 25–32. doi: 10.1016/j.dcan.2021.01.001
    [8] HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039
    [9] YU Xianhua, LI Dong, XU Yongjun, et al. Convolutional autoencoder-based phase shift feedback compression for intelligent reflecting surface-assisted wireless systems[J]. IEEE Communications Letters, 2022, 26(1): 89–93. doi: 10.1109/LCOMM.2021.3123941
    [10] DU Hongyang, ZHANG Jiayi, PEPPAS K P, et al. On the distribution of the ratio of products of Fisher-Snedecor $ \mathcal{F} $ random variables and its applications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1855–1866. doi: 10.1109/TVT.2019.2961427
    [11] ZWILLINGER D and JEFFREY A. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic Press, 2007.
    [12] BASAR E. Reconfigurable intelligent surfaces for Doppler effect and multipath fading mitigation[J]. Frontiers in Communications and Networks, 2021, 2: 672857. doi: 10.3389/frcmn.2021.672857
    [13] BLOCH M, BARROS J Ã, RODRIGUES M R D, et al. Wireless information-theoretic security[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2515–2534. doi: 10.1109/TIT.2008.921908
    [14] YAKUBOVICH S B and NGUYEN T H. The Double Mellin-Barnes Type Integrals and Their Applications To Convolution Theory[M]. Singapore: World Scientific, 1992.
    [15] MATHAI A M, SAXENA R K, and HAUBOLD H J. The H-Function: Theory and Applications[M]. New York: Springer, 2009.
    [16] KILBAS A A. H-transforms: Theory and Applications[M]. Boca Raton: CRC Press, 2004.
    [17] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544
    [18] LI Dong. Bound analysis of number configuration for reflecting elements in IRS-Assisted D2D communications[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2220–2224. doi: 10.1109/LWC.2022.3197614
    [19] MOHJAZI L, BARIAH L, MUHAIDAT S, et al. Performance of reconfigurable intelligent surfaces in the presence of generalized Gaussian noise[J]. IEEE Communications Letters, 2022, 26(4): 773–777. doi: 10.1109/LCOMM.2022.3145291
    [20] FENG Youhong, YAN Shihao, YANG Nan, et al. Safeguarding non-orthogonal multiple access with physical layer techniques[J]. IEEE Network, 2022, 36(3): 145–151. doi: 10.1109/MNET.014.2100091
    [21] XU Yongjun, GUI Guan, OHTSUKI T, et al. Robust resource allocation for two-tier HetNets: An interference-efficiency perspective[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1514–1528. doi: 10.1109/TGCN.2021.3090592
  • 加载中
图(9)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  357
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2023-01-05
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回