高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应分块和联合优化光滑l0范数的二维压缩感知算法

张小贝 唐辰 涂喜梅 陆晓刚 张琦

张小贝, 唐辰, 涂喜梅, 陆晓刚, 张琦. 基于自适应分块和联合优化光滑l0范数的二维压缩感知算法[J]. 电子与信息学报, 2023, 45(12): 4431-4439. doi: 10.11999/JEIT221097
引用本文: 张小贝, 唐辰, 涂喜梅, 陆晓刚, 张琦. 基于自适应分块和联合优化光滑l0范数的二维压缩感知算法[J]. 电子与信息学报, 2023, 45(12): 4431-4439. doi: 10.11999/JEIT221097
ZHANG Xiaobei, TANG Chen, TU Ximei, LU Xiaogang, ZHANG Qi. 2D Compressed Sensing Algorithm Based on Adaptive Blocking and Joint Optimization Smooth l0 Norm[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4431-4439. doi: 10.11999/JEIT221097
Citation: ZHANG Xiaobei, TANG Chen, TU Ximei, LU Xiaogang, ZHANG Qi. 2D Compressed Sensing Algorithm Based on Adaptive Blocking and Joint Optimization Smooth l0 Norm[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4431-4439. doi: 10.11999/JEIT221097

基于自适应分块和联合优化光滑l0范数的二维压缩感知算法

doi: 10.11999/JEIT221097
基金项目: 工信部民用飞机专项科研项目(MJZ-2018-S-30)
详细信息
    作者简介:

    张小贝:男,教授,研究方向为光电信息技术

    唐辰:男,硕士生,研究方向为航空图像压缩加密

    涂喜梅:女,研究员,研究方向为航空无线通信系统

    陆晓刚:男,高级工程师,研究方向为航空数据链通信系统

    张琦:男,讲师,研究方向为光电信息技术

    通讯作者:

    张小贝 xbzhang@shu.edu.com

  • 中图分类号: TN911.73

2D Compressed Sensing Algorithm Based on Adaptive Blocking and Joint Optimization Smooth l0 Norm

Funds: The Ministry of Industry and Information Technology Civil Aircraft Special Research Project (MJZ-2018-S-30)
  • 摘要: 传统的压缩感知模型和重构方法,虽能有效减少数据量,但压缩和重构性能不佳,故该文提出一种基于自适应分块和联合优化光滑l0范数(SL0)的2维压缩感知算法。压缩过程利用灰度熵和四叉树算法进行自适应分块和采样率分配,同时对压缩模型改进,使用混沌循环矩阵作为测量矩阵,提升了压缩性能。重构过程基于SL0算法,采用陡峭性更高的拟合函数,结合拟牛顿法和动态迭代的方案提高重构质量和效率。该算法峰值信噪比和结构相似性指数相比现有算法平均提升了5.44 dB和21.08%,平均计算时间仅需1.59 s,表明该算法能稳定、快速地实现图像的压缩感知和精确重构,为压缩感知和图像重构提供了新方法。
  • 图  1  2D-ABCS-JOSL0算法流程图

    图  2  图像自适应分块流程

    图  3  l0近似函数对比图

    图  4  6幅测试图像

    图  5  图像自适应分块后结果

    图  6  图像单一优化算法PSNR对比

    图  7  图像单一优化算法SSIM对比

    图  8  30%压缩采样率下不同算法Lena图像结果对比

    图  9  30%压缩采样率下不同算法Barbara图像重构结果对比

    图  10  不同算法计算时间对比

    表  1  不同图像不同算法PSNR(dB)/SSIM(%))对比

    压缩采样率(%)算法PeppersLenaGoldhillBarbaraBoatMandrill平均值
    10BCS-SPL23.79/64.8623.58/64.5726.71/54.9823.12/55.1223.64/55.122.54/37.1523.65/55.30
    ABCSDI-SPL24.79/72.0924.05/73.8727.57/57.2623.97/55.5224.28/56.5420.81/36.0224.24/58.55
    2DPL27.79/86.8127.13/83.9927.05/74.4224.34/72.9623.54/73.4321.89/50.8425.29/73.74
    TV-MS-BCS-SPL28.21/87.0327.33/80.4328.21/75.8928.01/74.0424.27/74.3322.97/52.3226.50/74.01
    2D-ABCS-JOSL028.75/87.1329.50/85.8928.79/78.7628.67/80.3326.57/77.8424.38/59.7327.77/78.28
    30BCS-SPL28.54/77.0829.04/81.3530.13/73.0226.20/68.2526.65/73.4226.03/52.4727.35/70.93
    ABCSDI-SPL29.93/82.5029.92/87.1232.09/72.2530.39/70.0127.65/73.4324.54/52.5929.09/72.98
    2DPL34.24/94.3434.33/93.1630.48/87.9128.46/85.7630.48/87.9826.36/69.8830.73/86.50
    TV-MS-BCS-SPL34.32/93.1330.99/88.9433.12/83.9529.76/82.4628.87/83.3227.04/73.5630.68/84.23
    2D-ABCS-JOSL034.94/94.4935.74/94.2733.51/90.3632.58/88.1131.13/89.7127.47/79.5032.56/89.41
    50BCS-SPL31.53/84.9032.43/87.0432.85/80.0830.05/79.5428.93/82.5129.38/68.7230.20/80.47
    ABCSDI-SPL33.02/88.4533.72/92.6533.84/81.5433.12/81.1130.02/82.5026.85/70.3231.76/82.76
    2DPL36.75/95.0337.56/95.2934.01/91.2232.64/91.0434.01/93.7229.01/86.2534.00/92.26
    TV-MS-BCS-SPL36.95/96.0033.20/92.0034.84/88.4733.96/88.9132.72/90.1328.04/81.2333.29/89.46
    2D-ABCS-JOSL037.85/96.0438.61/96.0035.87/93.6735.12/92.0334.58/93.7329.94/86.9535.33/93.07
    70BCS-SPL33.81/90.7534.87/94.0234.28/91.1933.52/87.8931.89/90.4232.01/81.0232.90/89.22
    ABCSDI-SPL36.71/94.3438.12/96.1434.95/89.2636.01/88.1433.38/90.9928.55/82.3434.62/90.20
    2DPL38.63/96.5539.55/96.8836.98/94.5636.25/94.6536.22/95.1331.83/90.7536.58/94.75
    TV-MS-BCS-SPL38.10/96.0934.92/93.9136.52/93.8736.32/93.4335.93/94.8131.75/90.1235.59/93.70
    2D-ABCS-JOSL039.64/96.7440.05/96.8837.28/95.0837.21/94.8036.66/95.5432.56/91.9737.23/95.17
    下载: 导出CSV
  • [1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [2] 覃亚丽, 梅济才, 任宏亮, 等. 基于高斯平滑压缩感知分数阶全变分算法的图像重构[J]. 电子与信息学报, 2021, 43(7): 2105–2112. doi: 10.11999/JEIT200376

    QIN Yali, MEI Jicai, REN Hongliang, et al. Image reconstruction based on Gaussian smooth compressed sensing fractional order total variation algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2105–2112. doi: 10.11999/JEIT200376
    [3] 仲元红, 周宇杰, 张静, 等. 基于非局部先验的深度压缩感知图像重构网络[J]. 电子与信息学报, 2023, 45(2): 654–663. doi: 10.11999/JEIT211506

    ZHONG Yuanhong, ZHOU Yujie, ZHANG Jing, et al. Deep compressive sensing image reconstruction network based on non-local prior[J]. Journal of Electronics &Information Technology, 2023, 45(2): 654–663. doi: 10.11999/JEIT211506
    [4] 方澄, 李慧娟, 路稳, 等. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470–479. doi: 10.12305/j.issn.1001-506X.2022.02.15

    FANG Cheng, LI Huijuan, LU Wen, et al. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking[J]. Systems Engineering and Electronics, 2022, 44(2): 470–479. doi: 10.12305/j.issn.1001-506X.2022.02.15
    [5] MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. 2009 16th IEEE International Conference on Image Processing, Cairo, Egypt, 2009: 3021–3024.
    [6] 何敬禄. 基于压缩感知的块稀疏信号重构和图像分块采样算法研究[D]. [硕士论文]. 广西大学, 2017.

    HE Jinglu. Research on block-sparse signal reconstruction and image block sampling algorithm based on compressive sensing[D]. [Master dissertation], Guangxi University, 2017.
    [7] MOHIMAN I H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l 0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289–301. doi: 10.1109/TSP.2008.2007606
    [8] 孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
    [9] CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
    [10] ZHANG Li and ZHOU Weijun. Spectral gradient projection method for solving nonlinear monotone equations[J]. Journal of Computational and Applied Mathematics, 2006, 196(2): 478–484. doi: 10.1016/j.cam.2005.10.002
    [11] GU Yuejianan, PIAO Yan, and HUANG Yufu. Adaptive block compressed sensing algorithm based on integral imaging[C]. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology, Shenzhen, China, 2020: 85–88.
    [12] 陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016, 37(1): 100–109. doi: 10.11959/j.issn.1000-436x.2016011

    CHEN Jian, SU Kaixiong, YANG Xiuzhi, et al. Reconstruction algorithm for block compressed sensing based on variation model[J]. Journal on Communications, 2016, 37(1): 100–109. doi: 10.11959/j.issn.1000-436x.2016011
    [13] YE Guodong, PAN Chen, HUANG Xiaoling, et al. An efficient pixel-level chaotic image encryption algorithm[J]. Nonlinear Dynamics, 2018, 94(1): 745–756. doi: 10.1007/s11071-018-4391-y
    [14] 王玥, 周城, 熊承义, 等. 基于纹理自适应全变分滤波的图像分块压缩感知优化算法[J]. 计算机科学, 2016, 43(2): 307–310,315. doi: 10.11896/j.issn.1002-137X.2016.2.064

    WANG Yue, ZHOU Cheng, XIONG Chengyi, et al. Enhanced block compressed sensing of images based on total variation using texture information[J]. Computer Science, 2016, 43(2): 307–310,315. doi: 10.11896/j.issn.1002-137X.2016.2.064
    [15] YE Xinrong and ZHU Weiping. Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient l 2Sl0 reconstruction algorithm[J]. IET Communications, 2014, 8(7): 1124–1131. doi: 10.1049/iet-com.2013.0571
    [16] FANG Xiaofeng, ZHANG Jiangshe, and LI Yingqi. Sparse signal reconstruction based on multiparameter approximation function with smoothed l0 norm[J]. Mathematical Problems in Engineering, 2014, 2014: 416542. doi: 10.1155/2014/416542
    [17] GENG Juan, WANG Laisheng, FU Aimin, et al. A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion[C]. 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China, 2012: 1333–1338.
    [18] XIANG Jianhong, YUE Huihui, YIN Xiangjun, et al. A reweighted symmetric smoothed function approximating L0-norm regularized sparse reconstruction method[J]. Symmetry, 2018, 10(11): 583. doi: 10.3390/sym10110583
    [19] 张巍, 朱正为, 汪亮, 等. 一种A-HNSL0压缩感知SAR图像重建方法[J]. 电光与控制, 2020, 27(8): 28–32. doi: 10.3969/j.issn.1671-637X.2020.08.006

    ZHANG Wei, ZHU Zhengwei, WANG Liang, et al. An A-HNSL0 compressed sensing based SAR image reconstruction method[J]. Electronics Optics &Control, 2020, 27(8): 28–32. doi: 10.3969/j.issn.1671-637X.2020.08.006
    [20] PANT J K, LU Wusheng, and ANTONIOU A. Unconstrained regularized lp-norm based algorithm for the reconstruction of sparse signals[C]. 2011 IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, 2011: 1740–1743.
    [21] ZHAO Hui, YE Hao, and WANG Ruyan. The construction of measurement matrices based on block weighing matrix in compressed sensing[J]. Signal Processing, 2016, 123: 64–74. doi: 10.1016/j.sigpro.2015.12.016
    [22] MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560): 459–467. doi: 10.1038/261459a0
    [23] ZHANG Bo, XIAO Di, ZHANG Zhenyu, et al. Compressing encrypted images by using 2D compressed sensing[C]. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems, Zhangjiajie, China, 2019: 1914–1919.
    [24] WU Rui, FU Yusheng, and LEI Jianmin. Adaptive multiscale block compressed sensing algorithm based on total variation[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China, 2018: 617–620.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  257
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2023-03-31
  • 网络出版日期:  2023-04-04
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回