高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型公平盲签名和属性基加密的食用农产品溯源方案

张学旺 林金朝 黎志鸿 姚亚宁

张学旺, 林金朝, 黎志鸿, 姚亚宁. 基于新型公平盲签名和属性基加密的食用农产品溯源方案[J]. 电子与信息学报, 2023, 45(3): 836-846. doi: 10.11999/JEIT221077
引用本文: 张学旺, 林金朝, 黎志鸿, 姚亚宁. 基于新型公平盲签名和属性基加密的食用农产品溯源方案[J]. 电子与信息学报, 2023, 45(3): 836-846. doi: 10.11999/JEIT221077
ZHANG Xuewang, LIN Jinzhao, LI Zhihong, YAO Yaning. Traceability Scheme of Edible Agricultural Products Based on Novel Fair Blind Signature and Attribute-based Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(3): 836-846. doi: 10.11999/JEIT221077
Citation: ZHANG Xuewang, LIN Jinzhao, LI Zhihong, YAO Yaning. Traceability Scheme of Edible Agricultural Products Based on Novel Fair Blind Signature and Attribute-based Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(3): 836-846. doi: 10.11999/JEIT221077

基于新型公平盲签名和属性基加密的食用农产品溯源方案

doi: 10.11999/JEIT221077
基金项目: 国家自然科学基金联合重点项目(U21A20447),南充市科技计划(21YFZJ0033)
详细信息
    作者简介:

    张学旺:男,副教授,博士生,研究方向为区块链与物联网、数据安全与隐私保护、大数据与智能数据处理等

    林金朝:男,教授,博士生导师,研究方向为无线通信传输技术、BAN与信息处理技术等

    黎志鸿:男,硕士生,研究方向为区块链、隐私保护

    姚亚宁:男,硕士生,研究方向为区块链、数据安全

    通讯作者:

    张学旺 zhangxw@cqupt.edu.cn

  • 中图分类号: TN918.4; TP309

Traceability Scheme of Edible Agricultural Products Based on Novel Fair Blind Signature and Attribute-based Encryption

Funds: The Natural Science Foundation Key Project of China (U21A20447), The Science and Technology Program of Nanchong (21YFZJ0033)
  • 摘要: 为解决食用农产品溯源中存在的身份隐私易泄露、难监管以及溯源数据共享困难等问题,该文提出一种基于新型公平盲签名和属性基加密的食用农产品溯源方案。该方案在联盟链授权访问、不可篡改特性的基础上,结合椭圆曲线和零知识证明提出一种新型公平盲签名方法,实现了食用农产品数据上传者身份条件匿名并通过双重ID机制避免了签名方陷害问题;方案同时采用Asmuth-Bloom门限改进的属性基加密结合智能合约技术实现了权限分层的食用农产品溯源数据秘密共享。各项分析及实验结果表明,该方案具备良好的安全性和功能性。
  • 图  1  农作物全产业链

    图  2  方案模型

    图  3  溯源数据共享

    图  4  密钥存储损耗

    图  5  效率对比

    图  6  溯源效率对比

    表  1  主要术语

    符号符号表示的含义
    TDOTraceability Data Owner, 溯源数据拥有者
    TDVTraceability Data Visitor, 溯源数据访问者
    AOAuthorized Organization, 授权组织机构
    CBConsortium Blockchain, 联盟链
    KGCKey Generation Center, 密钥生成中心
    IPFSInter Planetary File System, 星际文件系统
    TPRThird Party Regulator, 第三方监管机构
    PK非对称密码算法的公钥
    SK非对称密码算法的私钥
    MK主私钥
    CT密文
    M明文
    S属性集
    T访问树
    K对称密码算法的密钥
    下载: 导出CSV
    算法1 Asmuth-Bloom秘密分割
     输入:m, n, S, MK
     输出:$ \{ {K_1},{K_2}, \cdots ,{K_n}\} $
     (1)选择素数$ {p} > {\text{MK}} $
     (2)根据2.3节步骤2中条件,选取$ n $个小于$ p $的数$ \{ {d_1},{d_2}, \cdots ,{d_n}\} $
     (3)使用$ \{ {d_1},{d_2}, \cdots ,{d_n}\} $计算${d_{{\rm{mult}}} } = \prod\nolimits_{ {i} = 1}^{m} { {d_i} }$
     (4)对${\text{MK} }$进行处理得到$ {K} ' = {\text{M}}K + {rp} $
     (5)for $ i $ 1 to $ n $ by 1 do
     (6) $ {K_i} = K'\bmod {d_i} $
     (7)end for
     (8)return $ \{ {K_1},{K_2}, \cdots ,{K_n}\} $
    下载: 导出CSV

    表  2  交易基本结构

    字段相关描述
    nonceTDO生成的唯一随机数,用于标示交易
    fromAddress根据交易的签名计算出AO的地址
    toAddress交易接收方的地址,即智能合约的地址
    gas本次交易允许最多消耗的gas数量
    gasPrice本次交易的gas单价
    data${H} ({H} ({M} ')||{\rm{CT}}||{\text{I} }{ {\text{D} }_{ {\text{TPR} } } })$, $ H(M') $和${\rm{CT}}$
    下载: 导出CSV
    算法2 对称密码算法的密钥K恢复
     输入:SK, $ p $, $ r $
     输出:K
     (1) 客户端通过KGC解密SK后从SK中获取集合
     $ \{ {K_1},{K_2}, \cdots ,{K_m}\} $及集合$ \{ {d_1},{d_2}, \cdots ,{d_m}\} $;
     (2)使用$ \{ {d_1},{d_2}, \cdots ,{d_m}\} $计算${d_{{\rm{mult}}} } = \prod\nolimits_{ {i} = 1}^{m} { {d_i} }$;
     (3)根据中国剩余定理,求出下列同余方程组在模${ {d} _{{\rm{mult}}} }$下的唯一
     解$ K' $
            $\left. \begin{gathered} X \equiv {K_1}({\rm{mod}} {d_1}) \\ X \equiv {K_2}({\rm{mod}} {d_2}) \\ \qquad\quad \cdots \\ X \equiv {K_m}({\rm{mod}} {d_m}) \\ \end{gathered} \right\}$          (6)
     求得:$ X = \sum\nolimits_{i = 1}^m {{K_i}{D_i}{D_i}^{ - 1}} $,其中${D_i} = { { {d_{{\rm{mult}}} } } \mathord{\left/ {\vphantom { { {d_{mult} } } { {d_i} } } } \right. } { {d_i} } }$;
     ${K} ' = {X} \bmod {d_{{\rm{mult}}} }$
     (4)使用$ K' $,$ p $,$ r $计算$ {K} = {K} ' - {rp} $
     (5)return $ K $
    下载: 导出CSV

    表  3  Trace合约业务设计

    功能合约方法相关描述
    数据上链saveTraceData()存储溯源数据信息
    数据查询getTraceData()通过hash3查询溯源数据
    下载: 导出CSV
    算法3 存贮TraceData函数
     func (t *SimpleChaincode) saveTraceData(stub
     shim.ChaincodeStubInterface, args []string) pb.Response {
        hash3 := args[0]
        hash1 := args[1]
        ct := args[2]
        //检查是否存在该记录
        dataAsBytes, err := stub.GetState(hash3)
        if err != nil {
           return shim.Error(“获取数据失败:” + err.Error())}
        else if dataAsBytes != nil {
           return shim.Error(“该记录已存在: ” + hash3)}
        //创建新的data对象并通过marshal转为JSON
        data := &data{hash3, hash1, ct}
        dataJSONasBytes, err := json.Marshal(data)
        if err != nil {return shim.Error(err.Error())}
        //数据上链
        err = stub.PutState(hash3, dataJSONasBytes)
        if err != nil {return shim.Error(err.Error())}
        return shim.Success(nil)}
    下载: 导出CSV
    算法4 获取TraceData函数
     func (t *SimpleChaincode) getTraceData(stub
     shim.ChaincodeStubInterface, args []string) pb.Response {
        var hash3, jsonResp string
        var err error
        if len(args) != 1 {return shim.Error("请输入hash3")}
        hash3 = args[0]
        valAsbytes, err := stub.GetState(hash3)
        if err != nil {
          jsonResp = "{\"Error\":\"获取数据信息失败"\"}"
          return shim.Error(jsonResp)}
        else if valAsbytes == nil {
          jsonResp = "{\"Error\":\"未查找到该数据信息"\"}"
          return shim.Error(jsonResp)}
        return shim.Success(valAsbytes)}
    下载: 导出CSV

    表  4  功能对比分析

    方案 存储方式存储技术数据共享方式数据加密身份匿名保护
    文献[10]链上链下本地数据库+区块链1对1对称加密+ECC未匿名
    文献[12]链上链下IPFS+区块链1对多未加密未匿名
    文献[15]链上区块链1对多对称加密+CP-ABE未匿名
    本文方案链上链下IPFS+区块链1对多对称加密+改进CP-ABE条件匿名
    下载: 导出CSV

    表  5  效率测试

    密码强度(bit)签名方案盲化耗时(ms)签名耗时(ms)解盲耗时(ms)验签耗时(ms)总耗时(ms)
    1122048bit RSA公平盲签名3.60876.93960.59777.13818.284
    112224 bit 新型公平盲签名0.02330.37070.036325.882726.313
    1283072 bit RSA公平盲签名11.237522.10610.938222.022856.3046
    128256 bit 新型公平盲签名0.03540.35460.049126.762527.2016
    1927680 bit RSA公平盲签名155.6723309.30413.6179317.4969786.0912
    192384 bit 新型公平盲签名0.05990.38120.046428.19228.6795
    下载: 导出CSV
  • [1] 何晖, 郭富朝, 郭泽颖. 新《食品安全法实施条例》评述[J]. 食品科学, 2020, 41(11): 336–343. doi: 10.7506/spkx1002-6630-20191202-015

    HE Hui, GUO Fuchao, and GUO Zeying. Commentary on the new regulation on the implementation of the food safety law of the people’s republic of China[J]. Food Science, 2020, 41(11): 336–343. doi: 10.7506/spkx1002-6630-20191202-015
    [2] TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671–677. doi: 10.1038/nature01014
    [3] KIM Y G and WOO E. Consumer acceptance of a quick response (QR) code for the food traceability system: Application of an extended technology acceptance model (TAM)[J]. Food Research International, 2016, 85: 266–272. doi: 10.1016/j.foodres.2016.05.002
    [4] WANT R. RFID: A key to automating everything[J]. Scientific American, 2004, 290(1): 56–65. doi: 10.1038/scientificamerican0104-56
    [5] OKI K, MITSUISHI S, ITO T, et al. An agricultural monitoring system based on the use of remotely sensed imagery and field server web camera data[J]. GIScience & Remote Sensing, 2009, 46(3): 305–314. doi: 10.2747/1548-1603.46.3.305
    [6] BEHZADI G, O'SULLIVAN M J, and OLSEN T L. On metrics for supply chain resilience[J]. European Journal of Operational Research, 2020, 287(1): 145–158. doi: 10.1016/j.ejor.2020.04.040
    [7] ZHENG Zibin, XIE Shaoan, DAI Hongning, et al. Blockchain challenges and opportunities: A survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352–375. doi: 10.1504/IJWGS.2018.095647
    [8] 谢绒娜, 李晖, 史国振, 等. 基于区块链的可溯源访问控制机制[J]. 通信学报, 2020, 41(12): 82–93. doi: 10.11959/j.issn.1000-436x.2020232

    XIE Rongna, LI Hui, SHI Guozhen, et al. Blockchain-based access control mechanism for data traceability[J]. Journal on Communications, 2020, 41(12): 82–93. doi: 10.11959/j.issn.1000-436x.2020232
    [9] FENG Huanhuan, WANG Xiang, DUAN Yanqing, et al. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges[J]. Journal of Cleaner Production, 2020, 260: 121031. doi: 10.1016/j.jclepro.2020.121031
    [10] 于合龙, 陈邦越, 徐大明, 等. 基于区块链的水稻供应链溯源信息保护模型研究[J]. 农业机械学报, 2020, 51(8): 328–335. doi: 10.6041/j.issn.1000-1298.2020.08.036

    YU Helong, CHEN Bangyue, XU Daming, et al. Modeling of rice supply chain traceability information protection based on block chain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 328–335. doi: 10.6041/j.issn.1000-1298.2020.08.036
    [11] CAO Shoufeng, POWELL W, FOTH M, et al. Strengthening consumer trust in beef supply chain traceability with a blockchain-based human-machine reconcile mechanism[J]. Computers and Electronics in Agriculture, 2021, 180: 105886. doi: 10.1016/j.compag.2020.105886
    [12] SALAH K, NIZAMUDDIN N, JAYARAMAN R, et al. Blockchain-based soybean traceability in agricultural supply chain[J]. IEEE Access, 2019, 7: 73295–73305. doi: 10.1109/ACCESS.2019.2918000
    [13] 任守纲, 何自明, 周正己, 等. 基于CSBFT区块链的农作物全产业链信息溯源平台设计[J]. 农业工程学报, 2020, 36(3): 279–286. doi: 10.11975/j.issn.1002-6819.2020.03.034

    REN Shougang, HE Ziming, ZHOU Zhengji, et al. Design and implementation of information tracing platform for crop whole industry chain based on CSBFT-Blockchain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 279–286. doi: 10.11975/j.issn.1002-6819.2020.03.034
    [14] 刘双印, 雷墨鹥兮, 徐龙琴, 等. 基于区块链的农产品质量安全可信溯源系统研究[J]. 农业机械学报, 2022, 53(6): 327–337. doi: 10.6041/j.issn.1000-1298.2022.06.035

    LIU Shuangyin, LEI Moyixi, XU Longqin, et al. Development of reliable traceability system for agricultural products quality and safety based on blockchain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 327–337. doi: 10.6041/j.issn.1000-1298.2022.06.035
    [15] ZHANG Guofeng, CHEN Xiao, FENG Bin, et al. BCST-APTS: Blockchain and CP-ABE empowered data supervision, sharing, and privacy protection scheme for secure and trusted agricultural product traceability system[J]. Security and Communication Networks, 2022, 2022: 2958963. doi: 10.1155/2022/2958963
    [16] 孟小峰, 刘立新. 基于区块链的数据透明化: 问题与挑战[J]. 计算机研究与发展, 2021, 58(2): 237–252. doi: 10.7544/issn1000-1239.2021.20200017

    MENG Xiaofeng and LIU Lixin. Blockchain-based data transparency: Issues and challenges[J]. Journal of Computer Research and Development, 2021, 58(2): 237–252. doi: 10.7544/issn1000-1239.2021.20200017
    [17] KAMILARIS A, FONTS A, and PRENAFETA-BOLDΎ F X. The rise of blockchain technology in agriculture and food supply chains[J]. Trends in Food Science & Technology, 2019, 91: 640–652. doi: 10.1016/j.jpgs.2019.07.034
    [18] CHAUM D. Blind signatures for untraceable payments[M]. CHAUM D, RIVEST R L, and SHERMAN A T. Advances in Cryptology. Boston: Springer, 1983: 199–203.
    [19] CHAUM D and VAN HEYST E. Group signatures[C]. The Workshop on the Theory and Application of of Cryptographic Techniques. Brighton, UK: Springer, 1991: 257–265.
    [20] KOMANO Y, OHTA K, SHIMBO A, et al. Toward the fair anonymous signatures: Deniable ring signatures [12] appeared in the cryptographers' track at the RSA Conference 2006 (CT-RSA 2006)[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A(1): 54–64. doi: 10.1093/ietfec/e90-a.1.54
    [21] STADLER M, PIVETEAU J M, and CAMENISCH J. Fair blind signatures[C]. The International Conference on the Theory and Applications of Cryptographic Techniques. Saint-Malo, France: Springer, 1995: 209–219.
    [22] KUMAR P P, KUMAR S P, and ALPHONSE P J A. Attribute based encryption in cloud computing: A survey, gap analysis, and future directions[J]. Journal of Network and Computer Applications, 2018, 108: 37–52. doi: 10.1016/j.jnca.2018.02.009
    [23] CHEN Genlang, XU Zhiqian, ZHANG Jiajian, et al. Generic attribute revocation systems for attribute-based encryption in cloud storage[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(6): 773–786. doi: 10.1631/FITEE.1800512
    [24] AMBROSIN M, ANZANPOUR A, CONTI M, et al. On the feasibility of attribute-based encryption on internet of things devices[J]. IEEE Micro, 2016, 36(6): 25–35. doi: 10.1109/MM.2016.101
    [25] ASMUTH C and BLOOM J. A modular approach to key safeguarding[J]. IEEE Transactions on Information Theory, 1983, 29(2): 208–210. doi: 10.1109/TIT.1983.1056651
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  166
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2023-02-28
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回