高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(ε, δ)-本地差分隐私模型下的均值估计机制

张跃 朱友文 周玉倩 袁家斌

张跃, 朱友文, 周玉倩, 袁家斌. (ε, δ)-本地差分隐私模型下的均值估计机制[J]. 电子与信息学报, 2023, 45(3): 765-774. doi: 10.11999/JEIT221047
引用本文: 张跃, 朱友文, 周玉倩, 袁家斌. (ε, δ)-本地差分隐私模型下的均值估计机制[J]. 电子与信息学报, 2023, 45(3): 765-774. doi: 10.11999/JEIT221047
ZHANG Yue, ZHU Youwen, ZHOU Yuqian, YUAN Jiabin. Mean Estimation Mechanisms under (ε, δ)-Local Differential Privacy[J]. Journal of Electronics & Information Technology, 2023, 45(3): 765-774. doi: 10.11999/JEIT221047
Citation: ZHANG Yue, ZHU Youwen, ZHOU Yuqian, YUAN Jiabin. Mean Estimation Mechanisms under (ε, δ)-Local Differential Privacy[J]. Journal of Electronics & Information Technology, 2023, 45(3): 765-774. doi: 10.11999/JEIT221047

(ε, δ)-本地差分隐私模型下的均值估计机制

doi: 10.11999/JEIT221047
基金项目: 国家重点研发计划(2021YFB3100400),国家自然科学基金(62172216),江苏省自然科学基金(BK20211180),广西密码学与信息安全重点实验室开放课题(GCIS202107),江苏省研究生科研与实践创新计划(KYCX19_0203)
详细信息
    作者简介:

    张跃:女,博士生,研究方向为隐私保护技术

    朱友文:男,教授,研究方向为信息安全、数据隐私

    周玉倩:女,讲师,研究方向为可信的量子随机数生成、隐私保护

    袁家斌:男,教授,研究方向为云计算安全、量子信息安全

    通讯作者:

    朱友文 zhuyw@nuaa.edu.cn

  • 中图分类号: TN918; TP309

Mean Estimation Mechanisms under (ε, δ)-Local Differential Privacy

Funds: The National Key Research and Development Program of China (2021YFB3100400), The National Natural Science Foundation of China (62172216), The Natural Science Foundation of Jiangsu Province (BK20211180), The Research Fund of Guangxi Key Laboratory of Cryptography and Information Security (GCIS202107), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0203)
  • 摘要: 相对于ε-本地差分隐私(LDP)机制,(ε, δ)-本地差分隐私模型下的方案具有更小的误差边界和更高的数据效用。然而,当前的(ε, δ)-本地差分隐私均值估计机制仍存在估计误差大、数据效用低等问题。因此,针对均值估计问题,该文提出两种新的(ε, δ)-本地差分隐私均值估计机制:基于区间的均值估计机制(IM)和基于近邻的均值估计机制(NM)。IM的主要思想是:划分扰动后的数据到3个区间,真实数据以较大概率扰动到中间的区间,以较小概率扰动到两边的区间,收集者直接对扰动数据求均值得到无偏估计。NM的主要思想是:把真实数据以较大概率扰动到其邻域,以较小概率扰动到距离较远的值,收集者结合期望最大化算法得到高准确度的估计均值。最后,该文通过理论分析证明了IM和NM均可以满足隐私保护要求,并通过实验证实了IM和NM的数据效用优于现有机制。
  • 图  1  本地差分隐私模型下均值估计

    图  2  4种机制估计误差的理论对比

    图  3  设定ε=0.5, 2.0时基于合成数据集的不同隐私参数下4种机制估计准确度的对比

    图  4  设定δ=10–8, 10–6时基于合成数据集的不同隐私参数下4种机制估计准确度的对比

    图  5  设定ε=0.5, 2.0时基于真实数据集的不同隐私参数下4种机制估计准确度的对比

    图  6  设定δ=10–8, 10–6时基于真实数据集的不同隐私参数下4种机制估计准确度的对比

    表  1  现有的满足(ε, δ)-LDP的均值估计机制的误差

    GM[10]Opt-GM[11]NDM[12]
    MSE$\dfrac{2}{\varepsilon }\sqrt {2\ln \dfrac{ {1.25} }{\delta } }$$ \dfrac{{\sqrt 2 }}{\varepsilon }(\xi + \sqrt {{\xi ^2} + \varepsilon } ) $*${\left( {\dfrac{ { {{\rm{e}}^\varepsilon } + 1} }{ { {{\rm{e}}^\varepsilon } + 2\delta - 1} } } \right)^2}$
    *:其中$ \xi $由${\rm{erfc} }(\xi ) - {{\rm{e}}^\varepsilon }{\rm{erfc} }(\sqrt { {\xi ^2} + \varepsilon } ) = 2\delta$计算可得,${\rm{erfc}}( \cdot )$是互补误差函数[13]
    下载: 导出CSV
    算法1 基于区间的均值估计机制(IM)
     输入:用户${u_i}$的数据${x_i} \in [ - 1,1]$,隐私预算$\varepsilon $,松弛因子$\delta $
     输出:扰动数据${y_i} \in [ - C,C]$
     (1) 初始时,令$q = \dfrac{ { {{\rm{e}}^{\varepsilon/2} } - 1 - 4\delta } }{ {2{{\rm{e}}^{\varepsilon/2} }({{\rm{e}}^{\varepsilon/2} } + 1 + 4\delta )} }$, $p = {{\rm{e}}^\varepsilon }q + \delta$, $a = \dfrac{1}{{4q}} - \sqrt {\dfrac{p}{{2q(q - p)}} + \dfrac{1}{{16{q^2}}}} $, $C = \dfrac{{1 - 2a(q - p)}}{{2p}}$, $b = a - C$,
       $l({x_i}) = a{x_i} + b$, $r({x_i}) = a{x_i} - b$;
     (2) 对数据${x_i}$做如下扰动                   ${\rm{pdf} }[{y_i} = t\left| { {x_i} } \right.] = \left\{ \begin{aligned} & p,\;{\text{ } }t \in \left[ {l({x_i}),r({x_i})} \right] \\ & q,\;{\text{ } }t \in \left[ {\left. { - C,l({x_i})} \right) \cup \left( {r({x_i}),C} \right.} \right] \end{aligned} \right.$                 (2)
     (3) 将扰动后的$ {y_i} $发送给数据收集者。
    下载: 导出CSV
    算法2 基于近邻的均值估计机制(NM)
     输入:用户${u_i}$的数据${x_i} \in [ - 1,1]$,隐私预算$\varepsilon $,松弛因子$\delta $ 输出:扰动数据${y_i} \in [ - b,b + 1]$
     (1) 初始时,令$q = \dfrac{ {1 - 2b\delta } }{ {1 + 2b{{\rm{e}}^\varepsilon } } }$, $p = \dfrac{ { {{\rm{e}}^\varepsilon } + \delta } }{ {1 + 2b{{\rm{e}}^\varepsilon } } }$, $b = \dfrac{ { {{\rm{e}}^\varepsilon } - 1 - \varepsilon ({{\rm{e}}^\varepsilon } + \delta )} }{ {2({{\rm{e}}^\varepsilon }(1 - {{\rm{e}}^\varepsilon }) + \varepsilon ({{\rm{e}}^\varepsilon } + \delta ))} }$;
     (2) 格式化数据$ {x'_i} = {{({x_i} + 1)} \mathord{\left/ {\vphantom {{({x_i} + 1)} 2}} \right. } 2} $;
     (3) 对数据${x_i}$做如式(4)的扰动                       ${\rm{pdf} }\left( { {y_i}\left| { { x'_i} } \right.} \right) = \left\{ \begin{gathered} p,{\text{ } }\left| { { x'_i} - {y_i} } \right| \le b \\ q,{\text{ } }\left| { { x'_i} - {y_i} } \right| > b \\ \end{gathered} \right.$                   (4)
     (4) 将扰动后的$ {y_i} $发送给数据收集者。
    下载: 导出CSV
    算法3 NM机制的后处理过程
     输入:扰动数据$ y = \{ {y_1},{y_2}, \cdots ,{y_n}\} $
     输出:估计均值$\tilde \mu $
     (1) ${d_x} = {d_y} = {2^{\left\lfloor {{{\log }_2}\sqrt n } \right\rfloor }}$, $c = 0$;
     (2) 对NM的格式化输入区间$[0,1]$分组为$ {G^x} = \{ G_1^x,G_2^x, \cdots ,G_{{d_x}}^x\} $,输出区间$[ - b,b + 1]$分组为${G^y} = \{ G_1^y,G_2^y, \cdots ,G_{{d_y}}^y\} $;
     (3) 初始化原始数据在组$G_i^x$中的估计概率为$ {\tilde f^0} = \left\{ {{{\tilde f}^0}_1,{{\tilde f}^0}_2, \cdots ,{{\tilde f}^0}_{{d_x}}} \right\} = \left\{ {{1 \mathord{\left/ {\vphantom {1 {{d_x}}}} \right. } {{d_x}}},{1 \mathord{\left/ {\vphantom {1 {{d_x}}}} \right. } {{d_x}}}, \cdots ,{1 \mathord{\left/ {\vphantom {1 {{d_x}}}} \right. } {{d_x}}}} \right\} $;
     (4) 构建扰动矩阵${\boldsymbol{M}}$:${M_{ji} } = {\Pr _{{\rm{NM}}} }[G_j^y\left| {G_i^x} \right.]{\text{ } }(1 \le i \le {d_x},1 \le j \le {d_y})$;
     (5) while $c < 10000$ and $\left| {L({{\tilde f}^c}) - L({{\tilde f}^{c - 1}})} \right| > {10^{ - 3}}$:
      $c = c + 1$;
      E步骤:$ {P_i} = {\tilde f_i}^{c - 1}\displaystyle\sum\nolimits_{j = 1}^{{d_y}} {{n_j}\dfrac{{\Pr [y \in G_j^y\left| {x \in G_i^x,{{\tilde f}^{c - 1}}} \right.]}}{{\Pr [y \in G_j^y\left| {{{\tilde f}^{c - 1}}} \right.]}}} = {\tilde f_i}^{c - 1}\displaystyle\sum\nolimits_{j = 1}^{{d_y}} {{n_j}\dfrac{{{M_{ji}}}}{{\displaystyle\sum\nolimits_{k = 1}^{{d_x}} {{M_{jk}}{{\tilde f}^{c - 1}}_k} }}} {\text{ }}(1 \le i \le {d_x}) $;
      M步骤:$ {\tilde f^c}_i = {{{P_i}} \mathord{\left/ {\vphantom {{{P_i}} {\displaystyle\sum\nolimits_{k = 1}^{{d_x}} {{P_k}} }}} \right. } {\displaystyle\sum\nolimits_{k = 1}^{{d_x}} {{P_k}} }}{\text{ }}(1 \le i \le {d_x}) $;

      平滑步骤:${\tilde f^c}_i = \left\{ \begin{array}{lllllll} \dfrac{2}{3}{ {\tilde f}^c}_i + \dfrac{1}{3}{ {\tilde f}^c}_{i + 1}{\text{, } }& i = 1 \\ \dfrac{1}{2}{ {\tilde f}^c}_i + \dfrac{1}{4}({ {\tilde f}^c}_{i - 1} + { {\tilde f}^c}_{i + 1}){\text{, } }& 1 < i < {d_x} \\ \dfrac{1}{3}{ {\tilde f}^c}_{i - 1} + \dfrac{2}{2}{ {\tilde f}^c}_i{\text{, } }& i = {d_x} \\ \end{array} \right.$;
      end while
     (6) $\tilde \mu = \displaystyle\sum\nolimits_{i = 1}^{{d_x}} {{{\tilde f}^c}_i({{(1 + 2i)} \mathord{\left/ {\vphantom {{(1 + 2i)} {{d_x}}}} \right. } {{d_x}}} - 1)} $;
     (7) 返回$\tilde \mu $。
    下载: 导出CSV
  • [1] HITAJ B, ATENIESE G, and PEREZ-CRUZ F. Deep models under the GAN: Information leakage from collaborative deep learning[C]. The ACM SIGSAC Conference on Computer and Communications Security, Dallas Texas, USA, 2017: 603–618.
    [2] 钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4): 669–701. doi: 10.11897/SP.J.1016.2022.00669

    QIAN Wenjun, SHEN Qingni, WU Pengfei, et al. Research progress on privacy-preserving techniques in big data computing environment[J]. Chinese Journal of Computers, 2022, 45(4): 669–701. doi: 10.11897/SP.J.1016.2022.00669
    [3] KASIVISWANATHAN S P, LEE H K, NISSIM K, et al. What can we learn privately?[C]. The 49th Annual IEEE Symposium on Foundations of Computer Science, Philadelphia, USA, 2008: 531–540.
    [4] KASIVISWANATHAN S P, LEE H K, NISSIM K, et al. What can we learn privately?[J]. SIAM Journal on Computing, 2011, 40(3): 793–826. doi: 10.1137/090756090
    [5] 冯登国, 张敏, 叶宇桐. 基于差分隐私模型的位置轨迹发布技术研究[J]. 电子与信息学报, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632

    FENG Dengguo, ZHANG Min, and YE Yutong. Research on differentially private trajectory data publishing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632
    [6] XUE Qiao, ZHU Youwen, WANG Jian, et al. Locally differentially private distributed algorithms for set intersection and union[J]. Science China Information Sciences, 2021, 64: 219101. doi: 10.1007/s11432-018-9899-8
    [7] WANG Ning, XIAO Xiaokui, YANG Yin, et al. Collecting and analyzing multidimensional data with local differential privacy[C]. 2019 IEEE 35th International Conference on Data Engineering, Macao, China, 2019: 638–649.
    [8] LI Zitao, WANG Tianhao, LOPUHAÄ-ZWAKENBERG M, et al. Estimating numerical distributions under local differential privacy[C]. The 2020 ACM SIGMOD International Conference on Management of Data, Portland, USA, 2020: 621–635.
    [9] BASSILY R. Linear queries estimation with local differential privacy[C]. The 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, 2019: 721–729.
    [10] DWORK C and ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends® in Theoretical Computer Science, 2014, 9(3/4): 211–407. doi: 10.1561/0400000042
    [11] BALLE B and WANG Yuxiang. Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 403–412.
    [12] WANG Teng, ZHAO Jun, HU Zhi, et al. Local differential privacy for data collection and analysis[J]. Neurocomputing, 2021, 426: 114–133. doi: 10.1016/j.neucom.2020.09.073
    [13] TELLAMBURA C and ANNAMALAI A. Efficient computation of erfc(x) for large arguments[J]. IEEE Transactions on Communications, 2000, 48(4): 529–532. doi: 10.1109/26.843116
    [14] YEH I C and LIEN C H. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients[J]. Expert Systems with Applications, 2009, 36(2): 2473–2480. doi: 10.1016/j.eswa.2007.12.020
    [15] Minnesota Population Center. Integrated public use microdata series-international: version 7.3 [dataset][EB/OL]. https://doi.org/10.18128/D020.V7.3.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  278
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回