Task Allocation Method of Mobile Crowdsensing Based on Group Collaboration
-
摘要: 时空覆盖类感知任务对参与者的时间与空间约束使得传统单参与者模式难以适用。为此,该文提出群组协作的移动群智感知任务分配方法,以群组模式替代传统单参与者模式。设计层次化群组协作的任务分配框架,提出偏好感知的社交群组生成方法,引入社交关系生成社交群组,提高任务完成率。提出效用优化的任务群组匹配方法,采用网络流理论进行群组-任务匹配,保证平台效用最大化。仿真结果表明所提方法在任务完成率与平台效用方面均有较大提升。Abstract: The temporal and spatial constraints of spatio-temporal coverage tasks make it difficult to utilize the traditional single-participant model. Therefore, a task allocation method based on group collaboration in mobile crowdsensing is proposed to replace the traditional single participant mode with group mode. A task allocation framework for hierarchical group collaboration and a preference-aware social group generation method is proposed, In addition, social groups are generated by introducing social relationships to improve the task completion rate. A task-group matching method for utility optimization is proposed, and the network flow theory is used to perform group-task matching to ensure the maximum utility of the platform. Simulation results show that the proposed method can improve the task completion rate and platform utility.
-
Key words:
- Mobile crowdsensing /
- Task assignment /
- Group collaboration /
- Platform utility
-
表 1 实验参数
参数 值 任务接受率参数($\alpha $,$\beta $) 4, 0.5 老参与者的技能阈值($ \lambda $) 0.5 偏好超参数(${P_1}$,${P_2}$) 0.5 相关因素概率递增上限($ {I_{1\max }} \sim {I_{6\max }} $) 1.5 参与者技能的更新参数($\gamma $) 3 领导节点之间的通信成本($\vartheta $) 1 单位跳数的通信成本(${ {{\rm{unit}}} _{ki} }$) 0.5 任务的总周期($\psi $) [300, 800] 参与者在线时间窗口 [1, 10] -
[1] TAN Wenan, ZHAO Lu, LI Bo, et al. Multiple cooperative task allocation in group-oriented social mobile crowdsensing[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3387–3401. doi: 10.1109/TSC.2021.3086097 [2] WANG Jiangtao, WANG Feng, WANG Yasha, et al. HyTasker: Hybrid task allocation in mobile crowd sensing[J]. IEEE Transactions on Mobile Computing, 2020, 19(3): 598–611. doi: 10.1109/TMC.2019.2898950 [3] WANG Zhibo, ZHAO Jing, HU Jiahui, et al. Towards personalized task-oriented worker recruitment in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2021, 20(5): 2080–2093. doi: 10.1109/TMC.2020.2973990 [4] TAO Xi and SONG Wei. Profit-oriented task allocation for mobile crowdsensing with worker dynamics: Cooperative offline solution and predictive online solution[J]. IEEE Transactions on Mobile Computing, 2021, 20(8): 2637–2653. doi: 10.1109/TMC.2020.2983688 [5] XU Jia, RAO Zhengqiang, XU Lijie, et al. Incentive mechanism for multiple cooperative tasks with compatible users in mobile crowd sensing via online communities[J]. IEEE Transactions on Mobile Computing, 2020, 19(7): 1618–1633. doi: 10.1109/TMC.2019.2911512 [6] ZHAO Yan, ZHENG Kai, YIN Hongzhi, et al. Preference-aware task assignment in spatial crowdsourcing: From individuals to groups[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(7): 3461–3477. doi: 10.1109/TKDE.2020.3021028 [7] LEI Yu, WANG Zhitao, LI Wenjie, et al. Social attentive deep Q-networks for recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2443–2457. doi: 10.1109/TKDE.2020.3012346 [8] ZHAO Yiming, SONG Wei, and HAN Zhu. Social-aware data dissemination via device-to-device communications: Fusing social and mobile networks with incentive constraints[J]. IEEE Transactions on Services Computing, 2019, 12(3): 489–502. doi: 10.1109/TSC.2016.2599160 [9] WANG Wendong, GAO Hui, LIU C H, et al. Credible and energy-aware participant selection with limited task budget for mobile crowd sensing[J]. Ad Hoc Networks, 2016, 43: 56–70. doi: 10.1016/j.adhoc.2016.02.007 [10] WU Fan, YANG Shuo, ZHENG Zhenzhe, et al. Fine-grained user profiling for personalized task matching in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2021, 20(10): 2961–2976. doi: 10.1109/TMC.2020.2993963 [11] OGUNDELE T J, CHOW C Y, and ZHANG Jiadong. SoCaST: Exploiting social, categorical and spatio-temporal preferences for personalized event recommendations[C]. The 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, UK, 2017: 38–45. [12] LI Ji, CAI Zhipeng, YAN Mingyuan, et al. Using crowdsourced data in location-based social networks to explore influence maximization[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. [13] WANG Liang, YANG Dingqi, YU Zhiwen, et al. Acceptance-aware mobile crowdsourcing worker recruitment in social networks[J]. IEEE Transactions on Mobile Computing, 2023, 22(2): 634–646. doi: 10.1109/TMC.2021.3090764 [14] ZHAO Lu, TAN Wenan, LI Bo, et al. Multiple cooperative task assignment on reliability-oriented social crowdsourcing[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3402–3416. doi: 10.1109/TSC.2021.3103636 [15] XU Chenghao and SONG Wei. Efficient data uploading for mobile crowdsensing via team collaborating and matching[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 645–654. doi: 10.1109/TGCN.2021.3109740 [16] LUO Shuyun, SUN Yongmei, WEN Zhenyu, et al. C2: Truthful incentive mechanism for multiple cooperative tasks in mobile cloud[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6.