高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gimli/Xoodoo密码算法的不可能差分分析

樊婷 韦永壮 李灵琛

樊婷, 韦永壮, 李灵琛. Gimli/Xoodoo密码算法的不可能差分分析[J]. 电子与信息学报, 2023, 45(10): 3729-3736. doi: 10.11999/JEIT221038
引用本文: 樊婷, 韦永壮, 李灵琛. Gimli/Xoodoo密码算法的不可能差分分析[J]. 电子与信息学报, 2023, 45(10): 3729-3736. doi: 10.11999/JEIT221038
FAN Ting, WEI Yongzhuang, LI Lingchen. Impossible Differential Cryptanalysis on Gimli/Xoodoo Ciphers[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3729-3736. doi: 10.11999/JEIT221038
Citation: FAN Ting, WEI Yongzhuang, LI Lingchen. Impossible Differential Cryptanalysis on Gimli/Xoodoo Ciphers[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3729-3736. doi: 10.11999/JEIT221038

Gimli/Xoodoo密码算法的不可能差分分析

doi: 10.11999/JEIT221038
基金项目: 国家自然科学基金(61872103, 62162016),广西自然科学基金创新研究团队项目 (2019GXNSFGA245004)
详细信息
    作者简介:

    樊婷:女,博士生,研究方向为分组密码算法设计与分析

    韦永壮:男,教授,博士生导师,研究方向为密码函数、对称密码算法设计与分析

    李灵琛:女,博士,硕士生导师,研究方向为分组密码算法设计与分析

    通讯作者:

    韦永壮 walker_wyz@guet.edu.cn

  • 中图分类号: TN918

Impossible Differential Cryptanalysis on Gimli/Xoodoo Ciphers

Funds: The National Natural Science Foundation of China (61872103, 62162016), The Innovation Research Team Project of Guangxi Natural Science Foundation (2019GXNSFGA245004)
  • 摘要: 大状态轻量级分组密码Gimli和Xoodoo具备逻辑门较少﹑低功耗和快速加密等诸多优点,备受业界关注。Gimli和Xoodoo算法均基于384 bit置换,大状态增加了对其安全性分析的困难性。该文通过引入AND、OR操作与S盒之间的等价表示,构建了Gimli和Xoodoo不可能差分区分器自动化搜索模型。进一步,为了验证不可能差分区分器的正确性,提出基于“二分法”的不可能差分区分器矛盾点检测新方法。结果表明:该文搜索并验证得到Gimli算法10轮不可能差分区分器以及Xoodoo算法4轮不可能差分区分器。特别地,Gimli算法不可能差分区分器轮数较已有结果提高了3轮。
  • 图  1  Gimli状态矩阵

    图  2  Xoodoo状态矩阵

    图  3  Gimli置换SP盒等价表示

    图  4  Gimli的10轮不可能差分区分器矛盾点

    表  1  符号说明

    符号说明符号说明
    ${\bf{SG}}$Gimli算法输入状态$ \wedge $与运算
    $\Delta {\bf{SG}}$Gimli算法状态差分$ \vee $或运算
    $ {\bf{SX}} $Xoodoo算法输入状态$ \lt \lt $左移
    $ \Delta {\bf{SX}} $Xoodoo算法状态差分$ \lt \lt \lt $循环左移
    ${\Delta _{{\rm{in}}} }\not \to {\Delta _{{\rm{out}}} }$${\Delta _{{\rm{in}}} }$不能传播到${\Delta _{{\rm{out}}} }$$ \oplus $异或运算
    下载: 导出CSV
    算法1 Gimli算法
     $ {{\bf{SG}}_{0,n}} = X, $$ {{\bf{SG}}_{1,n}} = Y, $${ {\bf{SG} }_{2,n} } = {\boldsymbol{Z}}(0 \le n \le 3)$
     对$ r = 24,23, \cdots ,1 $执行:
       ${\boldsymbol{X}} \leftarrow {\boldsymbol{X}} \lt \lt \lt 24,$${\boldsymbol{Y}} \leftarrow {\boldsymbol{Y}} \lt \lt \lt 9,$$ Z \leftarrow Z $                                 循环移位
       ${\bf{SG} }' \leftarrow {\bf{SP} }({\boldsymbol{X} },{\boldsymbol{Y} },{\boldsymbol{Z} })$                                           SP盒
       若$ r\text{mod} 4 = 0 $,执行${\bf{SG} }'' \leftarrow {\rm{Small}} - {\rm{Swap}}({\bf{SG}})$                               交换操作
       若$ r\text{mod} 4 = 2 $,执行${\bf{SG}}'' \leftarrow {\rm{Big}} - {\rm{Swap}}({\bf{SG}})$
       若$ r\text{mod} 4 = 0 $,执行$ {{\bf{SG}}''_{0,0}} \leftarrow {{\bf{SG}}''_{0,0}} \oplus 0x9e37790 \oplus r $                            异或轮常数
     结束,返回Gimli$({\bf{SG}}) = {\bf{SG}}''$
    下载: 导出CSV

    表  2  S1, S2和S3盒置换表3 bit输出

    S盒3 bit输出
    S1 =[0, 0, 0, 1, 1, 1, 1, 0, 6, 6, 6, 7, 7, 7, 7, 6, 2, 2, 2, 3, 3, 3, 3, 2, 6, 6, 6, 7, 7, 7, 7, 6, 3, 3, 3, 2, 2, 2, 2, 3, 5, 5, 5, 4, 4, 4, 4, 5, 1, 1, 1, 0, 0, 0, 0, 1, 5, 5, 5, 4, 4, 4, 4, 5, 0, 0, 0, 1, 1, 1, 1, 0, 6, 6, 6, 7, 7, 7, 7, 6, 2, 2, 2, 3, 3, 3, 3, 2, 6, 6, 6, 7, 7, 7, 7, 6, 3, 3, 3, 2, 2, 2, 2, 3, 5, 5, 5, 4, 4, 4, 4, 5, 1, 1, 1, 0, 0, 0, 0, 1, 5, 5, 5, 4, 4, 4, 4, 5, 0, 0, 0, 1, 1, 1, 1, 0, 6, 6, 6, 7, 7, 7, 7, 6, 2, 2, 2, 3, 3, 3, 3, 2, 6, 6, 6, 7, 7, 7, 7, 6, 3, 3, 3, 2, 2, 2, 2, 3, 5, 5, 5, 4, 4, 4, 4, 5, 1, 1, 1, 0, 0, 0, 0, 1, 5, 5, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 2, 2, 2, 3, 3, 3, 3, 2, 6, 6, 6, 7, 7, 7, 7, 6, 2, 2, 2, 3, 3, 3, 3, 2, 7, 7, 7, 6, 6, 6, 6, 7, 1, 1, 1, 0, 0, 0, 0, 1, 5, 5, 5, 4, 4, 4, 4, 5, 1, 1, 1, 0, 0, 0, 0, 1, 6, 6, 6, 7, 7, 7, 7, 6, 0, 0, 0, 1, 1, 1, 1, 0, 4, 4, 4, 5, 5, 5, 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 5, 5, 5, 4, 4, 4, 4, 5, 3, 3, 3, 2, 2, 2, 2, 3, 7, 7, 7, 6, 6, 6, 6, 7, 3, 3, 3, 2, 2, 2, 2, 3, 6, 6, 6, 7, 7, 7, 7, 6, 0, 0, 0, 1, 1, 1, 1, 0, 4, 4, 4, 5, 5, 5, 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 5, 5, 5, 4, 4, 4, 4, 5, 3, 3, 3, 2, 2, 2, 2, 3, 7, 7, 7, 6, 6, 6, 6, 7, 3, 3, 3, 2, 2, 2, 2, 3, 6, 6, 6, 7, 7, 7, 7, 6, 0, 0, 0, 1, 1, 1, 1, 0, 4, 4, 4, 5, 5, 5, 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 5, 5, 5, 4, 4, 4, 4, 5, 3, 3, 3, 2, 2, 2, 2, 3, 7, 7, 7, 6, 6, 6, 6, 7, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 4, 4, 4, 5, 5, 5, 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 4, 4, 4, 5, 5, 5, 5, 4, 1, 1, 1, 0, 0, 0, 0, 1, 7, 7, 7, 6, 6, 6, 6, 7, 3, 3, 3, 2, 2, 2, 2, 3, 7, 7, 7, 6, 6, 6, 6, 7]
    S2 =[0, 1, 6, 7, 2, 3, 6, 7, 3, 2, 5, 4, 1, 0, 5, 4, 0, 1, 6, 7, 2, 3, 6, 7, 3, 2, 5, 4, 1, 0, 5, 4, 0, 1, 6, 7, 2, 3, 6, 7, 3, 2, 5, 4, 1, 0, 5, 4, 4, 5, 2, 3, 6, 7, 2, 3, 7, 6, 1, 0, 5, 4, 1, 0, 6, 7, 0, 1, 4, 5, 0, 1, 5, 4, 3, 2, 7, 6, 3, 2, 6, 7, 0, 1, 4, 5, 0, 1, 5, 4, 3, 2, 7, 6, 3, 2, 6, 7, 0, 1, 4, 5, 0, 1, 5, 4, 3, 2, 7, 6, 3, 2, 2, 3, 4, 5, 0, 1, 4, 5, 1, 0, 7, 6, 3, 2, 7, 6]
    S3 =[0, 1, 6, 7, 2, 3, 6, 7, 3, 2, 5, 4, 1, 0, 5, 4, 6, 7, 0, 1, 4, 5, 0, 1, 5, 4, 3, 2, 7, 6, 3, 2]
    下载: 导出CSV

    表  3  Xoodoo算法操作$ \chi $的S盒表示

    $ x $01234567
    $ S(x) $05326147
    下载: 导出CSV
    算法2 新验证算法
     输入 轮数$ r $,分组长度轮数$ n $, ${\Delta _{{\rm{in}}} }\not \to {\Delta _{{\rm{out}}} }$, $ i = 0 $.
     输出 $ q $ bit矛盾点, 集合$ {T_1} $和$ {T_2}. $
     步骤1. while $i \le n:$
          ${\rm{mid}} = (i + n)/2$
          删除等式$ {\alpha _j} = {\beta _j}, $$j \in [i,{\rm{mid}} - 1]$
          if 模型有解:
           $n = {\rm{mid}}$.
          else if 模型无解:
           $i = {\rm{mid}}$.
         返回$ i,n $
     步骤2. 逐条删除等式$ {\alpha _k} = {\beta _k} $, $ k \in [i,n - 1] $.
         while 模型无解:
           将$ {\alpha _k} $放入集合$ {T_1} $,将$ {\beta _k} $放入集合$ {T_2}. $
         遍历集合$ {T_1} $,$ {T_2} $的值,在模型有解的情况下, 查看二者
         是否存在交集.
    下载: 导出CSV

    表  4  结果对比

    密码算法分析方法轮数文献
    Gimli不可能差分区分器7[12]
    10本文
    Xoodoo差分区分器3[14]
    不可能差分区分器4本文
    下载: 导出CSV
  • [1] NIST. Lightweight cryptography[EB/OL]. https://csrc.nist.gov/Projects/Lightweight-Cryptography, 2018.
    [2] NIST. Lightweight cryptography[EB/OL]. https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates, 2019.
    [3] NIST. Lightweight cryptography[EB/OL]. https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates, 2021.
    [4] BERNSTEIN D J, KÖLBL S, LUCKS S, et al. GIMLI: A cross-platform permutation[C]. The 19th International Conference on Cryptographic Hardware and Embedded Systems, Taipei, China, 2017: 299–320.
    [5] DOBRAUNIG C, EICHLSEDER M, MENDEL F, et al. ASCON v1.2: Lightweight authenticated encryption and hashing[J]. Journal of Cryptology, 2021, 34(3): 33. doi: 10.1007/s00145-021-09398-9
    [6] BEIERLE C, BIRYUKOV A, DOS SANTOS L C, et al. Lightweight AEAD and hashing using the Sparkle permutation family[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 208–261. doi: 10.13154/tosc.v2020.iS1.208-261
    [7] BERTONI G, DAEMEN J, PEETERS M, et al. Keccak[C]. The 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, 2013: 313–314.
    [8] DAEMEN J, HOFFERT S, PEETERS M, et al. Xoodyak, a lightweight cryptographic scheme[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 60–87. doi: 10.13154/tosc.v2020.iS1.60-87
    [9] BERNSTEIN D J, KÖLBL S, LUCKS S, et al. Gimli[EB/OL]. https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/round-2/submissions-rnd2/gimli.zip, 2019.
    [10] DAEMEN J, HOFFERT S, VAN ASSCHE G, et al. The design of Xoodoo and Xoofff[J]. IACR Transactions on Symmetric Cryptology, 2018, 2018(4): 1–38. doi: 10.13154/tosc.v2018.i4.1-38
    [11] LIU Fukang, ISOBE T, and MEIER W. Automatic verification of differential characteristics: Application to reduced Gimli[C]. The 40th Annual International Cryptology Conference, Santa Barbara, USA, 2020: 219–248.
    [12] 谭豪, 申兵, 苗旭东, 等. Gimli认证加密方案的不可能差分分析[J]. 西安电子科技大学学报, 2022, 49(5): 1–9. doi: 10.19665/j.issn1001-2400.2022.05.024

    TAN Hao, SHEN Bing, MIAO Xudong, et al. Impossible differential cryptanalysis of the Gimli authenticated encryption scheme[J]. Journal of Xidian University, 2022, 49(5): 1–9. doi: 10.19665/j.issn1001-2400.2022.05.024
    [13] LIU Yunwen, SUN Siwei, and LI Chao. Rotational cryptanalysis from a differential-linear perspective[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 741–770.
    [14] BELLINI E and MAKARIM R. Functional cryptanalysis: Application to reduced-round Xoodoo[EB/OL]. https://eprint.iacr.org/2022/134, 2022.
    [15] SUN Siwei, HU Lei, WANG Peng, et al. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 158–178.
    [16] SageMath[EB/OL]. http://www.sagemath.org/index.html, 2022.
    [17] Gurobi optimizer 9.1. 2[EB/OL]. http://www.gurobi.com, 2021.
    [18] CUI Tingting, CHEN Shiyao, JIA Keting, et al. New automatic search tool for impossible differentials and zero-correlation linear approximations[EB/OL]. https://eprint.iacr.org/2016/689, 2016.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  549
  • HTML全文浏览量:  322
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-11-24
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回