高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于级联视觉Transformer与多尺度特征融合的燃烧场温度层析成像

司菁菁 王晓莉 程银波 刘畅

司菁菁, 王晓莉, 程银波, 刘畅. 基于级联视觉Transformer与多尺度特征融合的燃烧场温度层析成像[J]. 电子与信息学报, 2023, 45(10): 3511-3519. doi: 10.11999/JEIT221034
引用本文: 司菁菁, 王晓莉, 程银波, 刘畅. 基于级联视觉Transformer与多尺度特征融合的燃烧场温度层析成像[J]. 电子与信息学报, 2023, 45(10): 3511-3519. doi: 10.11999/JEIT221034
SI Jingjing, WANG Xiaoli, CHENG Yinbo, LIU Chang. Temperature Tomography for Combustion Field Based on Hierarchical Vision Transformer and Multi-scale Features Merging[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3511-3519. doi: 10.11999/JEIT221034
Citation: SI Jingjing, WANG Xiaoli, CHENG Yinbo, LIU Chang. Temperature Tomography for Combustion Field Based on Hierarchical Vision Transformer and Multi-scale Features Merging[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3511-3519. doi: 10.11999/JEIT221034

基于级联视觉Transformer与多尺度特征融合的燃烧场温度层析成像

doi: 10.11999/JEIT221034
基金项目: 河北省自然科学基金(F2021203027),燕山大学基础创新科研培育项目(2021LGZD011),河北省重点实验室项目(202250701010046)
详细信息
    作者简介:

    司菁菁:女,教授,研究方向为多媒体信号处理

    王晓莉:女,硕士生,研究方向为基于深度学习的逆问题求解

    程银波:男,讲师,研究方向为深度学习

    刘畅:男,讲师,研究方向为激光吸收光谱及其层析成像技术

    通讯作者:

    程银波 cyb@hebau.edu.cn

  • 中图分类号: TN919.8

Temperature Tomography for Combustion Field Based on Hierarchical Vision Transformer and Multi-scale Features Merging

Funds: The Natural Science Foundation of Hebei Province (F2021203027), The Cultivation Project for Basic Research and Innovation of Yanshan University (2021LGZD011), Hebei Key Laboratory Project (202250701010046)
  • 摘要: 可调谐二极管激光吸收光谱层析成像(TDLAT)是一种重要的光学非侵入式燃烧诊断技术,可实现燃烧场2维横截面气体温度和浓度等流场参数分布的重建。该文将视觉Transformer(ViT)与多尺度特征融合引入TDLAT领域,研究有限数量测量数据与整个测量空间温度分布的非线性映射,提出基于级联ViT与多尺度特征融合的燃烧场温度层析成像网络(HVTMFnet)。该网络提取并融合TDLAT测量数据的局部-全局相关特征,实现整个测量空间的层次化温度分布重建。仿真实验与实际TDLAT系统实验均表明,HVTMFnet重建图像的质量优于现有的基于卷积神经网络(CNN)和基于残差网络的温度层析成像方案。与基于CNN的温度层析成像方案相比,HVTMFnet的重建误差能够降低49.2%~72.1%。
  • 图  1  层次化离散模型示例

    图  2  HVTMFnet模型

    图  3  TDLAT实验系统中的光路布置示意图

    图  4  6种重建模型的误差值比较

    图  5  4种网络模型对代表性单峰样本的重建图像及残差图像

    图  6  4种网络模型对代表性双峰样本的重建图像及残差图像

    图  7  4种网络模型对代表性真实单峰火焰燃烧场的重建图像

    图  8  4种网络模型对代表性真实双峰火焰燃烧场的重建图像

    表  1  实验中HVTMFnet模型的参数设置

    ${H_{m - 1}} \times {W_{m - 1}} \times {C_{m - 1}}$${H_{{\text{patch}}}}$${W_{{\text{patch}}}}$$N_{{\text{patch}}}^m$${D_m}$$D_{{\text{FFN}}}^m$$N_{{\text{layer}}}^m$$N_{{\text{head}}}^m$$d_{{\text{head}}}^m$${H_m} \times {W_m} \times {C_m}$
    m=14×8×222816642282×4×16
    m=22×4×1622212851268161×2×128
    下载: 导出CSV

    表  2  实验中采用的数据集参数设置

    $ {T_{{\text{min}}}} $$ {X_{{\text{min}}}} $$ {u_d} $$ {v_d} $$ {\beta _d} $$ {\mu _{x,d}} $$ {\mu _{y,d}} $$ {\sigma _d} $
    300 K0.01U(300,600)U(0.10,0.11)U(0.70,1)U(34,65)U(34,65)U(10,25)
    下载: 导出CSV

    表  3  4种网络模型训练时间及重建时间的对比

    H-CNNHTT-ResNetPI-CNNHVTMFnet
    训练时间(min)0.812.672.866.10
    重建时间(s)2.23×10–67.24×10–65.45×10–57.83×10–6
    下载: 导出CSV
  • [1] CAI Weiwei and KAMINSKI C F. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers[J]. Applied Physics Letters, 2014, 104(3): 034101. doi: 10.1063/1.4862754
    [2] JANG H and CHOI D. Similarity analysis for time series-based 2D temperature measurement of engine exhaust gas in TDLAT[J]. Applied Sciences, 2020, 10(1): 285. doi: 10.3390/app10010285
    [3] HUANG Jianqing, ZHAO Jianan, and CAI Weiwei. Compressing convolutional neural networks using POD for the reconstruction of nonlinear tomographic absorption spectroscopy[J]. Computer Physics Communications, 2019, 241: 33–39. doi: 10.1016/j.cpc.2019.03.020
    [4] 蔡天赋, 李明玉, 靳一, 等. 基于Landweber迭代算法的欠采样恢复数字预失真技术[J]. 电子与信息学报, 2021, 43(11): 3166–3173. doi: 10.11999/JEIT201051

    CAI Tianfu, LI Mingyu, JIN Yi, et al. An under-sampling restoration digital predistortion technique based on Landweber iteration algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3166–3173. doi: 10.11999/JEIT201051
    [5] 刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267

    LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267
    [6] HUANG Jianqing, LIU Hecong, DAI Jinghang, et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 187–193. doi: 10.1016/j.jqsrt.2018.07.011
    [7] 王明, 向鹏, 祁建民, 等. 基于改进卷积神经网络的激光吸收光谱层析成像[J]. 应用激光, 2021, 41(4): 890–901. doi: 10.14128/j.cnki.al.20214104.890

    WANG Ming, XIANG Peng, QI Jianmin, et al. Reconstruction for tunable diode laser absorption tomography based on convolutional neural networks[J]. Applied Laser, 2021, 41(4): 890–901. doi: 10.14128/j.cnki.al.20214104.890
    [8] SI Jingjing, LI Guoliang, CHENG Yinbo, et al. Hierarchical temperature imaging using pseudoinversed convolutional neural network aided TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4506711. doi: 10.1109/TIM.2021.3110282
    [9] 司菁菁, 付庚宸, 程银波, 等. 基于层次化离散与残差网络的可调谐二极管激光吸收光谱层析成像[J]. 电子与信息学报, 2022, 44(7): 2539–2546. doi: 10.11999/JEIT210160

    SI Jingjing, FU Gengchen, CHENG Yinbo, et al. Tunable diode laser absorption tomography based on hierarchical discretization and residual network[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2539–2546. doi: 10.11999/JEIT210160
    [10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C/OL]. The 9th International Conference on Learning Representations, 2021.
    [12] HENDRYCKS D and GIMPEL K. Gaussian error linear units (GELUs)[J]. arXiv: 1606.08415, 2016.
    [13] BAO Yong, ZHANG Rui, ENEMALI G, et al. Relative entropy regularized TDLAS tomography for robust temperature imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4501909. doi: 10.1109/TIM.2020.3037950
    [14] WEI Chuyu, SCHWARM K K, PINEDA D I, et al. Physics-trained neural network for sparse-view volumetric laser absorption imaging of species and temperature in reacting flows[J]. Optics Express, 2021, 29(14): 22553–22566. doi: 10.1364/OE.427730
    [15] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  350
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-10-24
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回