高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滤波器组多载波交错梳状谱的雷达通信一体化信号技术

陈军 张沂东 王杰 梁兴东 陈龙永 李焱磊

陈军, 张沂东, 王杰, 梁兴东, 陈龙永, 李焱磊. 基于滤波器组多载波交错梳状谱的雷达通信一体化信号技术[J]. 电子与信息学报, 2023, 45(12): 4361-4370. doi: 10.11999/JEIT221013
引用本文: 陈军, 张沂东, 王杰, 梁兴东, 陈龙永, 李焱磊. 基于滤波器组多载波交错梳状谱的雷达通信一体化信号技术[J]. 电子与信息学报, 2023, 45(12): 4361-4370. doi: 10.11999/JEIT221013
CHEN Jun, ZHANG Yidong, WANG Jie, LIANG Xingdong, CHEN Longyong, LI Yanlei. Integrated Signal Technology of Radar-Communication Based on Filter Bank MultiCarrier Interleaved Comb Spectrum[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4361-4370. doi: 10.11999/JEIT221013
Citation: CHEN Jun, ZHANG Yidong, WANG Jie, LIANG Xingdong, CHEN Longyong, LI Yanlei. Integrated Signal Technology of Radar-Communication Based on Filter Bank MultiCarrier Interleaved Comb Spectrum[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4361-4370. doi: 10.11999/JEIT221013

基于滤波器组多载波交错梳状谱的雷达通信一体化信号技术

doi: 10.11999/JEIT221013
基金项目: 国家自然科学基金(62171229),江苏省自然科学基金(BK20190772)
详细信息
    作者简介:

    陈军:男,博士,讲师,研究方向为雷达通信一体化、低截获概率雷达、雷达目标检测等

    张沂东:男,硕士生,研究方向为雷达通信一体化信号处理

    王杰:男,博士,副研究员,研究方向为MIMO雷达信号设计、合成孔径雷达处理、雷达通信一体化

    梁兴东:男,博士,研究员,研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、成像处理及应用、雷达通信一体化

    陈龙永:男,博士,研究员,研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、微波成像新概念、新体制和新技术雷达系统

    李焱磊:男,博士,副研究员,研究方向为新体制雷达信号处理、可重构异构处理架构、穿墙感知雷达

    通讯作者:

    王杰 002915@nuist.edu.cn

  • 中图分类号: TN958

Integrated Signal Technology of Radar-Communication Based on Filter Bank MultiCarrier Interleaved Comb Spectrum

Funds: The National Natural Science Foundation of China (62171229), The Natural Science Foundation of Jiangsu Province (BK20190772)
  • 摘要: 雷达通信一体化是在实现无线通信的同时实现目标探测,以减小电磁干扰,提高频谱利用率。信号设计是雷达通信一体化技术实现的关键。由于常见的基于正交频分复用(OFDM)的雷达通信一体化信号存在频偏敏感和带外辐射过高的问题,不适用于高动态应用场景。考虑到滤波器组多载波(FBMC)信号具有高多普勒容限和低带外泄露的优点,该文在FBMC框架下,通过优化雷达通信子载波时频位置,提出了一种FBMC梳状谱雷达通信一体化信号设计方法。由于FBMC信号载波间与符号间存在固有干扰,因此信道估计不准确且不适应快时变信道,因此该文设计了一种交错梳状辅助导频结构,消除固有干扰的同时实现信道跟踪。此外,一体化信号中雷达复信号会对通信信号引入实干扰,该文提出了一种基于干扰利用的实干扰补偿算法,将实干扰用于通信信号还原。仿真结果表明,在快时变信道下,该文所设计的雷达通信一体化信号在进行高数据率传输过程中具有较低的误码率,且具有较好的雷达探测性能。
  • 图  1  FBMC交错梳状谱雷达通信一体化信号调制解调框图

    图  2  传统辅助导频示意图

    图  3  优化导频结构

    图  4  误码率随信噪比变化曲线

    图  5  不同频偏$ \Delta f $下误码率对比图

    图  6  雷达干扰分析图

    图  7  雷达性能分析图

    图  8  FBMC交错梳状谱雷达通信一体化信号仿真场景图

    图  9  FBMC雷达通信一体化信号通信传输结果

    图  10  节点A的雷达探测结果

    表  1  仿真参数

    参数参数值
    符号数N/子载波个数M12/9600
    FBMC符号时宽(μs)80
    子载波间隔$ \Delta f $(kHz)12.5
    信号带宽(MHz)100
    抽样频率(MHz)120
    导频间隔$ {N_f}/{N_t} $12/6
    调制方式16QAM
    下载: 导出CSV
  • [1] 肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
    [2] 刘珍, 郭银景, 杨文健. 水下FBMC系统的离散导频信道估计技术研究[J]. 电子测量与仪器学报, 2021, 35(2): 179–185. doi: 10.13382/j.jemi.B2003262

    LIU Zhen, GUO Yinjing, and YANG Wenjian. Research on discrete pilot channel estimation technology of underwater FBMC system[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(2): 179–185. doi: 10.13382/j.jemi.B2003262
    [3] CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266
    [4] 杨超, 张逸格, 郑霖. 基于波形共用机制的雷达通信一体化研究进展[J]. 无线电通信技术, 2021, 47(2): 131–140. doi: 10.3969/j.issn.1003-3114.2021.02.002

    YANG Chao, ZHANG Yige, and ZHENG Lin. Research progress on shared waveform designing for joint radar communication[J]. Radio Communications Technology, 2021, 47(2): 131–140. doi: 10.3969/j.issn.1003-3114.2021.02.002
    [5] FENG Zhiyong, FANG Zixi, WEI Zhiqing, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1–27. doi: 10.23919/JCC.2020.01.001
    [6] 李国琳, 郭文彬. 雷达通信一体化波形设计综述[J]. 移动通信, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006

    LI Guolin and GUO Wenbin. Waveform design for integrated radar and communication: A survey[J]. Mobile Communications, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006
    [7] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [8] 赵辉, 王薇, 莫谨荣, 等. 滤波器组多载波系统中基于双层优化的峰均比抑制算法[J]. 电子与信息学报, 2021, 43(6): 1742–1749. doi: 10.11999/JEIT200369

    ZHAO Hui, WANG Wei, MO Jinrong, et al. Peak-to-average power ratio reduction algorithm based on double optimization in FBMC-OQAM system[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1742–1749. doi: 10.11999/JEIT200369
    [9] SEXTON C, BODINIER Q, FARHANG A, et al. Coexistence of OFDM and FBMC for underlay D2D communication in 5G networks[C]. Proceedings of 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–7.
    [10] 王献炜, 颜彪, 王应元, 等. 一种基于LMMSE改进的FBMC信道估计算法[J]. 无线电通信技术, 2020, 46(1): 103–107. doi: 10.3969/j.issn.1003-3114.2020.01.014

    WANG Xianwei, YAN Biao, WANG Yingyuan, et al. An improved FBMC channel estimation algorithm based on LMMSE[J]. Radio Communications Technology, 2020, 46(1): 103–107. doi: 10.3969/j.issn.1003-3114.2020.01.014
    [11] 刘永进, 陈西宏, 赵宇. OFDM/OQAM系统信道估计改进方法[J]. 国防科技大学学报, 2021, 43(1): 72–78. doi: 10.11887/j.cn.202101010

    LIU Yongjin, CHEN Xihong, and ZHAO Yu. Improved channel estimation method for OFDM/OQAM system[J]. Journal of National University of Defense Technology, 2021, 43(1): 72–78. doi: 10.11887/j.cn.202101010
    [12] LÉLÉ C, JAVAUDIN J P, LEGOUABLE R, et al. Channel estimation methods for preamble-based OFDM/OQAM modulations[J]. European Transactions on Telecommunications, 2008, 19(7): 741–750. doi: 10.1002/ett.1332
    [13] 闫莉丽, 罗志年. FBMC/OQAM系统基于前导码相关的信道估计改进方法[J]. 北京交通大学学报, 2020, 44(2): 91–97. doi: 10.11860/j.issn.1673-0291.20190086

    YAN Lili and LUO Zhinian. An improved channel estimation based on the correlation of the preambles in FBMC/OQAM systems[J]. Journal of Beijing Jiaotong University, 2020, 44(2): 91–97. doi: 10.11860/j.issn.1673-0291.20190086
    [14] KOFIDIS E, KATSELIS D, RONTOGIANNIS A, et al. Preamble-based channel estimation in OFDM/OQAM systems: A review[J]. Signal Processing, 2013, 93(7): 2038–2054. doi: 10.1016/j.sigpro.2013.01.013
    [15] JAVAUDIN J P, LACROIX D, and ROUXEL A. Pilot-aided channel estimation for OFDM/OQAM[C]. Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, Jeju, South Korea, 2003: 1581–1585.
    [16] LELE C, LEGOUABLE R, and SIOHAN P. Channel estimation with scattered pilots in OFDM/OQAM[C]. Proceedings of the 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil, 2008: 286–290.
    [17] BAZZI J, WEITKEMPER P, and KUSUME K. Power efficient scattered pilot channel estimation for FBMC/OQAM[C]. Proceedings of the 10th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 2015: 1–6.
    [18] MESTRE X and KOFIDIS E. Pilot-based channel estimation for FBMC/OQAM systems under strong frequency selectivity[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3696–3700.
    [19] BELLANGER M. FS-FBMC: An alternative scheme for filter bank based multicarrier transmission[C]. Proceedings of 2012 5th International Symposium on Communications, Control and Signal Processing, Rome, Italy, 2012: 1–4.
    [20] AL-AMAIREH H and KOLLÁR Z. Optimization of hopping DFT for FS-FBMC receivers[J]. Signal Processing, 2021, 182: 107983. doi: 10.1016/j.sigpro.2021.107983
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  355
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-06-22
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回