Integrated Signal Technology of Radar-Communication Based on Filter Bank MultiCarrier Interleaved Comb Spectrum
-
摘要: 雷达通信一体化是在实现无线通信的同时实现目标探测,以减小电磁干扰,提高频谱利用率。信号设计是雷达通信一体化技术实现的关键。由于常见的基于正交频分复用(OFDM)的雷达通信一体化信号存在频偏敏感和带外辐射过高的问题,不适用于高动态应用场景。考虑到滤波器组多载波(FBMC)信号具有高多普勒容限和低带外泄露的优点,该文在FBMC框架下,通过优化雷达通信子载波时频位置,提出了一种FBMC梳状谱雷达通信一体化信号设计方法。由于FBMC信号载波间与符号间存在固有干扰,因此信道估计不准确且不适应快时变信道,因此该文设计了一种交错梳状辅助导频结构,消除固有干扰的同时实现信道跟踪。此外,一体化信号中雷达复信号会对通信信号引入实干扰,该文提出了一种基于干扰利用的实干扰补偿算法,将实干扰用于通信信号还原。仿真结果表明,在快时变信道下,该文所设计的雷达通信一体化信号在进行高数据率传输过程中具有较低的误码率,且具有较好的雷达探测性能。Abstract: Radar-communication integration can realize both target detection and wireless communication, so as to reduce electromagnetic interference and improve spectrum utilization. The integrated signal design of radar and communication is the key to the realization of integrated technology. The common radar communication integration signals based on Orthogonal Frequency Division Multiplexing (OFDM) have the problems of frequency offset sensitivity and excessive out-of-band radiation, so they are not suitable for high-dynamic applications. Considering the advantages of Filter Bank MultiCarrier (FBMC) signal with high Doppler tolerance and low out-of-band leakage, the time-frequency locations of radar and communication subcarriers are optimized under the framework of FBMC, and a design method of FBMC comb spectrum radar-communication integrated signal is proposed. Since there is inherent interference between FBMC signal carriers and symbols, which leads to inaccurate channel estimation and is not suitable for fast time-varying channels, an interleaved comb-shaped auxiliary pilot structure is designed to eliminate inherent interference and achieve channel tracking. In addition, the radar complex signal in the integrated signal introduces real interference to the communication signal. A real interference compensation algorithm is proposed based on interference utilization, which is used to restore the communication signal. The simulation results show that under the fast time-varying channel, the designed radar-communication integrated signal has a lower bit error rate and better radar detection performance in the process of high data rate transmission.
-
表 1 仿真参数
参数 参数值 符号数N/子载波个数M 12/9600 FBMC符号时宽(μs) 80 子载波间隔$ \Delta f $(kHz) 12.5 信号带宽(MHz) 100 抽样频率(MHz) 120 导频间隔$ {N_f}/{N_t} $ 12/6 调制方式 16QAM -
[1] 肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515 [2] 刘珍, 郭银景, 杨文健. 水下FBMC系统的离散导频信道估计技术研究[J]. 电子测量与仪器学报, 2021, 35(2): 179–185. doi: 10.13382/j.jemi.B2003262LIU Zhen, GUO Yinjing, and YANG Wenjian. Research on discrete pilot channel estimation technology of underwater FBMC system[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(2): 179–185. doi: 10.13382/j.jemi.B2003262 [3] CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266 [4] 杨超, 张逸格, 郑霖. 基于波形共用机制的雷达通信一体化研究进展[J]. 无线电通信技术, 2021, 47(2): 131–140. doi: 10.3969/j.issn.1003-3114.2021.02.002YANG Chao, ZHANG Yige, and ZHENG Lin. Research progress on shared waveform designing for joint radar communication[J]. Radio Communications Technology, 2021, 47(2): 131–140. doi: 10.3969/j.issn.1003-3114.2021.02.002 [5] FENG Zhiyong, FANG Zixi, WEI Zhiqing, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1–27. doi: 10.23919/JCC.2020.01.001 [6] 李国琳, 郭文彬. 雷达通信一体化波形设计综述[J]. 移动通信, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006LI Guolin and GUO Wenbin. Waveform design for integrated radar and communication: A survey[J]. Mobile Communications, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006 [7] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890 [8] 赵辉, 王薇, 莫谨荣, 等. 滤波器组多载波系统中基于双层优化的峰均比抑制算法[J]. 电子与信息学报, 2021, 43(6): 1742–1749. doi: 10.11999/JEIT200369ZHAO Hui, WANG Wei, MO Jinrong, et al. Peak-to-average power ratio reduction algorithm based on double optimization in FBMC-OQAM system[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1742–1749. doi: 10.11999/JEIT200369 [9] SEXTON C, BODINIER Q, FARHANG A, et al. Coexistence of OFDM and FBMC for underlay D2D communication in 5G networks[C]. Proceedings of 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–7. [10] 王献炜, 颜彪, 王应元, 等. 一种基于LMMSE改进的FBMC信道估计算法[J]. 无线电通信技术, 2020, 46(1): 103–107. doi: 10.3969/j.issn.1003-3114.2020.01.014WANG Xianwei, YAN Biao, WANG Yingyuan, et al. An improved FBMC channel estimation algorithm based on LMMSE[J]. Radio Communications Technology, 2020, 46(1): 103–107. doi: 10.3969/j.issn.1003-3114.2020.01.014 [11] 刘永进, 陈西宏, 赵宇. OFDM/OQAM系统信道估计改进方法[J]. 国防科技大学学报, 2021, 43(1): 72–78. doi: 10.11887/j.cn.202101010LIU Yongjin, CHEN Xihong, and ZHAO Yu. Improved channel estimation method for OFDM/OQAM system[J]. Journal of National University of Defense Technology, 2021, 43(1): 72–78. doi: 10.11887/j.cn.202101010 [12] LÉLÉ C, JAVAUDIN J P, LEGOUABLE R, et al. Channel estimation methods for preamble-based OFDM/OQAM modulations[J]. European Transactions on Telecommunications, 2008, 19(7): 741–750. doi: 10.1002/ett.1332 [13] 闫莉丽, 罗志年. FBMC/OQAM系统基于前导码相关的信道估计改进方法[J]. 北京交通大学学报, 2020, 44(2): 91–97. doi: 10.11860/j.issn.1673-0291.20190086YAN Lili and LUO Zhinian. An improved channel estimation based on the correlation of the preambles in FBMC/OQAM systems[J]. Journal of Beijing Jiaotong University, 2020, 44(2): 91–97. doi: 10.11860/j.issn.1673-0291.20190086 [14] KOFIDIS E, KATSELIS D, RONTOGIANNIS A, et al. Preamble-based channel estimation in OFDM/OQAM systems: A review[J]. Signal Processing, 2013, 93(7): 2038–2054. doi: 10.1016/j.sigpro.2013.01.013 [15] JAVAUDIN J P, LACROIX D, and ROUXEL A. Pilot-aided channel estimation for OFDM/OQAM[C]. Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, Jeju, South Korea, 2003: 1581–1585. [16] LELE C, LEGOUABLE R, and SIOHAN P. Channel estimation with scattered pilots in OFDM/OQAM[C]. Proceedings of the 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil, 2008: 286–290. [17] BAZZI J, WEITKEMPER P, and KUSUME K. Power efficient scattered pilot channel estimation for FBMC/OQAM[C]. Proceedings of the 10th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 2015: 1–6. [18] MESTRE X and KOFIDIS E. Pilot-based channel estimation for FBMC/OQAM systems under strong frequency selectivity[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3696–3700. [19] BELLANGER M. FS-FBMC: An alternative scheme for filter bank based multicarrier transmission[C]. Proceedings of 2012 5th International Symposium on Communications, Control and Signal Processing, Rome, Italy, 2012: 1–4. [20] AL-AMAIREH H and KOLLÁR Z. Optimization of hopping DFT for FS-FBMC receivers[J]. Signal Processing, 2021, 182: 107983. doi: 10.1016/j.sigpro.2021.107983