[1] |
ZHA Mingfeng, QIAN Wenbin, YANG Wenji, et al. Multifeature transformation and fusion-based ship detection with small targets and complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4511405. doi: 10.1109/LGRS.2022.3192559
|
[2] |
黄博, 周劼, 江舸. 基于全变分的高分辨SAR联合特征增强成像算法[J]. 红外与毫米波学报, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013HUANG Bo, ZHOU Jie, and JIANG Ge. Joint feature enhancement for high resolution SAR imaging based on total variation regularization[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013
|
[3] |
杨磊, 张苏, 盖明慧, 等. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13YANG Lei, ZHANG Su, GAI Minghui, et al. High-resolution SAR imagery with enhancement of directional structure feature[J]. Systems Engineering and Electronics, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13
|
[4] |
张思乾, 于美婷, 匡纲要. 一种低秩张量约束的下视稀疏线阵SAR三维成像算法[J]. 电子与信息学报, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274ZHANG Siqian, YU Meiting, and KUANG Gangyao. A three-dimensional imaging algorithm of downward-looking sparse linear array SAR based on low-rank tensor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274
|
[5] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[6] |
MALEKI A, ANITORI L, YANG Zai, et al. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
|
[7] |
杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature enhancement for generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
|
[8] |
VU T and RAICH R. Exact linear convergence rate analysis for low-rank symmetric matrix completion via gradient descent[C]. Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 3240–3244.
|
[9] |
CANDES E J and RECHT B. Exact low-rank matrix completion via convex optimization[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 806–812.
|
[10] |
YANG Dong, LIAO Guisheng, ZHU Shengqi, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1539–1543. doi: 10.1109/LGRS.2014.2300170
|
[11] |
QIU Wei, ZHOU Jianxiong, and FU Qiang. Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 100–115. doi: 10.1109/TIP.2019.2927458
|
[12] |
FAN Jicong, DING Lijun, CHEN Yudong, et al. Factor group-sparse regularization for efficient low-rank matrix recovery[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 5104–5114.
|
[13] |
PU Wei and WU Junjie. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness[J]. IEEE Transactions on Computational Imaging, 2020, 6: 868–882. doi: 10.1109/TCI.2020.2993170
|
[14] |
MORADIKIA M, SAMADI S, and CETIN M. Joint SAR imaging and multi-feature decomposition from 2-D under-sampled data via low-rankness plus sparsity priors[J]. IEEE Transactions on Computational Imaging, 2019, 5(1): 1–16. doi: 10.1109/TCI.2018.2881530
|
[15] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
[16] |
YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/LGRS.2012.2196676
|
[17] |
ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Micro-Doppler effects removed sparse aperture ISAR imaging via low-rank and double sparsity constrained ADMM and linearized ADMM[J]. IEEE Transactions on Image Processing, 2021, 30: 4678–4690. doi: 10.1109/TIP.2021.3074271
|
[18] |
YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
|
[19] |
FAZEL M. Matrix rank minimization with applications[D]. [Ph. D. dissertation], Stanford University, 2001.
|
[20] |
HASTIE T, TIBSHIRANI R, WAINWRIGHT M, 刘波, 景鹏杰, 译. 稀疏统计学习及其应用[M]. 北京: 人民邮电出版社, 2018: 103–104.HASTIE T, TIBSHIRANI R, WAINWRIGHT M, LIU Bo, JING Pengjie, translation. Statistical Learning with Sparsity: The Lasso and Generalizations[M]. Beijing: Posts & Telecom Press, 2018: 103–104.
|
[21] |
杨磊, 张苏, 黄博, 等. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300YANG Lei, ZHANG Su, HUANG Bo, et al. Multi-task learning of sparse autofocusing for high-resolution SAR imagery[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300
|
[22] |
谢朋飞, 张磊, 吴振华. 融合ω-K和BP算法的圆柱扫描毫米波三维成像算法[J]. 雷达学报, 2018, 7(3): 387–394. doi: 10.12000/JR17112XIE Pengfei, ZHANG Lei, and WU Zhenhua. A three-dimensional imaging algorithm fusion with ω-K and BP algorithm for millimeter-wave cylindrical scanning[J]. Journal of Radars, 2018, 7(3): 387–394. doi: 10.12000/JR17112
|
[23] |
DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
|