高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低秩矩阵补全高分辨SAR成像特征重建

杨磊 王腾腾 陈英杰 盖明慧 许瀚文

杨磊, 王腾腾, 陈英杰, 盖明慧, 许瀚文. 低秩矩阵补全高分辨SAR成像特征重建[J]. 电子与信息学报, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992
引用本文: 杨磊, 王腾腾, 陈英杰, 盖明慧, 许瀚文. 低秩矩阵补全高分辨SAR成像特征重建[J]. 电子与信息学报, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992
YANG Lei, WANG Tengteng, CHEN Yingjie, GAI Minghui, XU Hanwen. Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992
Citation: YANG Lei, WANG Tengteng, CHEN Yingjie, GAI Minghui, XU Hanwen. Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992

低秩矩阵补全高分辨SAR成像特征重建

doi: 10.11999/JEIT220992
基金项目: 国家自然科学基金(62271487)
详细信息
    作者简介:

    杨磊:男,副教授,研究方向为高分辨SAR成像及机器学习理论应用

    王腾腾:女,硕士生,研究方向为高分辨SAR成像及毫米波安检成像

    陈英杰:男,硕士生,研究方向为毫米波成像与稀疏阵列构型设计

    盖明慧:女,硕士生,研究方向为高分辨SAR成像及优化学习理论

    通讯作者:

    杨磊 yanglei840626@163.com

  • 中图分类号: TN957.52

Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion

Funds: The National Natural Science Foundation of China (62271487)
  • 摘要: 在对抗电磁环境中,机载合成孔径雷达(SAR)容易受到电子干扰,造成若干回波脉冲不可用,导致SAR回波部分数据丢失,成像性能受限。由此,该文提出了一种基于低秩矩阵补全的特征重建SAR(FR-SAR)成像算法。考虑到SAR回波数据的低秩特性,引入矩阵分解获取行或列的非零数,应用因式组稀疏正则化(FGSR)算法对非零列数取凸优化,可获取SAR回波数据之间的相关性,从而实现SAR回波数据的补全。同时为了提升该算法的抑噪声性能和高分辨能力,将稀疏先验引入正则化模型。利用交替方向多乘子法(ADMM)实现矩阵补全和稀疏特征增强协同求解。FR-SAR算法由于未使用奇异值分解(SVD),运算效率更高。仿真和实测实验验证了FR-SAR算法的有效性,同时利用相变分析方法(PTD)对所提算法和传统算法的恢复能力进行定量对比,均验证了FR-SAR算法的优越性。
  • 图  1  SAR信号模型

    图  2  FR-SAR算法流程图

    图  3  远场成像仿真实验结果

    图  4  近场成像仿真实验结果

    图  5  Sandia真实数据实验结果

    图  6  相变热力图对比结果

  • [1] ZHA Mingfeng, QIAN Wenbin, YANG Wenji, et al. Multifeature transformation and fusion-based ship detection with small targets and complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4511405. doi: 10.1109/LGRS.2022.3192559
    [2] 黄博, 周劼, 江舸. 基于全变分的高分辨SAR联合特征增强成像算法[J]. 红外与毫米波学报, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013

    HUANG Bo, ZHOU Jie, and JIANG Ge. Joint feature enhancement for high resolution SAR imaging based on total variation regularization[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013
    [3] 杨磊, 张苏, 盖明慧, 等. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13

    YANG Lei, ZHANG Su, GAI Minghui, et al. High-resolution SAR imagery with enhancement of directional structure feature[J]. Systems Engineering and Electronics, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13
    [4] 张思乾, 于美婷, 匡纲要. 一种低秩张量约束的下视稀疏线阵SAR三维成像算法[J]. 电子与信息学报, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274

    ZHANG Siqian, YU Meiting, and KUANG Gangyao. A three-dimensional imaging algorithm of downward-looking sparse linear array SAR based on low-rank tensor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274
    [5] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [6] MALEKI A, ANITORI L, YANG Zai, et al. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
    [7] 杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature enhancement for generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    [8] VU T and RAICH R. Exact linear convergence rate analysis for low-rank symmetric matrix completion via gradient descent[C]. Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 3240–3244.
    [9] CANDES E J and RECHT B. Exact low-rank matrix completion via convex optimization[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 806–812.
    [10] YANG Dong, LIAO Guisheng, ZHU Shengqi, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1539–1543. doi: 10.1109/LGRS.2014.2300170
    [11] QIU Wei, ZHOU Jianxiong, and FU Qiang. Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 100–115. doi: 10.1109/TIP.2019.2927458
    [12] FAN Jicong, DING Lijun, CHEN Yudong, et al. Factor group-sparse regularization for efficient low-rank matrix recovery[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 5104–5114.
    [13] PU Wei and WU Junjie. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness[J]. IEEE Transactions on Computational Imaging, 2020, 6: 868–882. doi: 10.1109/TCI.2020.2993170
    [14] MORADIKIA M, SAMADI S, and CETIN M. Joint SAR imaging and multi-feature decomposition from 2-D under-sampled data via low-rankness plus sparsity priors[J]. IEEE Transactions on Computational Imaging, 2019, 5(1): 1–16. doi: 10.1109/TCI.2018.2881530
    [15] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [16] YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/LGRS.2012.2196676
    [17] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Micro-Doppler effects removed sparse aperture ISAR imaging via low-rank and double sparsity constrained ADMM and linearized ADMM[J]. IEEE Transactions on Image Processing, 2021, 30: 4678–4690. doi: 10.1109/TIP.2021.3074271
    [18] YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    [19] FAZEL M. Matrix rank minimization with applications[D]. [Ph. D. dissertation], Stanford University, 2001.
    [20] HASTIE T, TIBSHIRANI R, WAINWRIGHT M, 刘波, 景鹏杰, 译. 稀疏统计学习及其应用[M]. 北京: 人民邮电出版社, 2018: 103–104.

    HASTIE T, TIBSHIRANI R, WAINWRIGHT M, LIU Bo, JING Pengjie, translation. Statistical Learning with Sparsity: The Lasso and Generalizations[M]. Beijing: Posts & Telecom Press, 2018: 103–104.
    [21] 杨磊, 张苏, 黄博, 等. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300

    YANG Lei, ZHANG Su, HUANG Bo, et al. Multi-task learning of sparse autofocusing for high-resolution SAR imagery[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300
    [22] 谢朋飞, 张磊, 吴振华. 融合ω-K和BP算法的圆柱扫描毫米波三维成像算法[J]. 雷达学报, 2018, 7(3): 387–394. doi: 10.12000/JR17112

    XIE Pengfei, ZHANG Lei, and WU Zhenhua. A three-dimensional imaging algorithm fusion with ω-K and BP algorithm for millimeter-wave cylindrical scanning[J]. Journal of Radars, 2018, 7(3): 387–394. doi: 10.12000/JR17112
    [23] DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
  • 加载中
图(6)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  352
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-10-09
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回