高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MIMO阵列的综合射频系统鲁棒波形设计算法研究

唐波 吴文俊 史英春 王旭阳 李达

唐波, 吴文俊, 史英春, 王旭阳, 李达. 基于MIMO阵列的综合射频系统鲁棒波形设计算法研究[J]. 电子与信息学报, 2023, 45(11): 3918-3926. doi: 10.11999/JEIT220969
引用本文: 唐波, 吴文俊, 史英春, 王旭阳, 李达. 基于MIMO阵列的综合射频系统鲁棒波形设计算法研究[J]. 电子与信息学报, 2023, 45(11): 3918-3926. doi: 10.11999/JEIT220969
TANG Bo, WU Wenjun, SHI Yingchun, WANG Xuyang, LI Da. Robust Waveform Design Based on MIMO Multi-Function Radio Frequency Systems under Angle Uncertainties[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3918-3926. doi: 10.11999/JEIT220969
Citation: TANG Bo, WU Wenjun, SHI Yingchun, WANG Xuyang, LI Da. Robust Waveform Design Based on MIMO Multi-Function Radio Frequency Systems under Angle Uncertainties[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3918-3926. doi: 10.11999/JEIT220969

基于MIMO阵列的综合射频系统鲁棒波形设计算法研究

doi: 10.11999/JEIT220969
基金项目: 国家自然科学基金(62171450, 61671453),安徽省杰出青年科学基金(2108085J30)
详细信息
    作者简介:

    唐波:男,博士,副教授,研究方向为雷达信号处理、通信信号处理、MIMO系统和阵列信号处理等

    吴文俊:男,硕士生,研究方向为雷达信号处理、波形设计等

    史英春:男,博士,副教授,研究方向为阵列信号处理、通信信号处理等

    王旭阳:男,硕士生,研究方向为雷达信号处理、波形设计等

    李达:男,博士生,研究方向为雷达信号处理、波形设计等

    通讯作者:

    吴文俊  wuwenjun.1010@nudt.edu.cn

  • 中图分类号: TN959.1

Robust Waveform Design Based on MIMO Multi-Function Radio Frequency Systems under Angle Uncertainties

Funds: The National Natural Science Foundation of China (62171450, 61671453), The Anhui Provincial Natural Science Foundation (2108085J30)
  • 摘要: 基于多输入多输出(MIMO)阵列的综合射频(MFRF)系统通过优化多波形,可以在不同角度辐射不同的信号,进而同时实现多种功能。然而,当存在角度误差时,综合射频系统所合成的信号会出现畸变,这将导致系统性能下降。该文主要考虑存在角度误差时,对综合射频系统鲁棒波形设计算法进行研究。首先,提出基于最小最大化(Min-Max)框架的MIMO阵列多波形优化问题。同时,为减少非线性功放引起的波形失真,对发射波形施加了峰均比(PAPR)约束。为求解此问题,该文提出了基于交替方向乘子法(ADMM)和Majorization-Minimization(MM)方法的波形优化算法。仿真实验结果表明,当存在角度误差时,所提算法能够获得更好的性能。
  • 图  1  基于MIMO阵列的综合射频系统

    图  2  算法收敛曲线

    图  3  算法在各个角度上所合成的信号与期望信号的误差

    图  4  合成信号性能检验

    图  5  所合成的雷达信号脉压性能

    图  6  所合成的通信信号误码率

    图  7  合成干扰信号的效果

    图  8  不同峰均比下的算法迭代曲线

    图  9  不同峰均比下算法在各个角度上所合成的信号与期望信号的误差

    图  10  不同峰均比下雷达信号峰值旁瓣比

    图  11  不同峰均比下通信信号误码率

    算法1 基于ADMM算法的综合射频系统鲁棒波形设计算法
     输入:阵列天线数 $ {N_{\text{T}}} $,期望信号以及角度误差范围 $ \{ {{\boldsymbol{d}}_k},{\varOmega _k}\} _{k = 1}^K $,发射总能量 $ {e_{\text{T}}} $,峰均比 $ \rho $,惩罚因子 $ \mu $。
     输出:发射阵列波形 $ {\boldsymbol{S}} $。
     初始化$ {\boldsymbol{A}} = \sum\nolimits_{k = 1}^K {\sum\nolimits_{m = 1}^{{N_k}} {{{\boldsymbol{a}}_{k,m}}{\boldsymbol{a}}_{k,m}^{\text{H}}} } ,{{\boldsymbol{A}}_{{\text{neg}}}} = {\boldsymbol{A}} - {\lambda _{\max }}({\boldsymbol{A}}){\boldsymbol{I}},l = 0,{{\boldsymbol{S}}^{(l)}},\{ {\boldsymbol{y}}_{k,m}^{(l)},\gamma _{k,m}^{(l)}\} $。
     重复:
        $ q = 0,{{\boldsymbol{S}}^{(l,q)}} = {{\boldsymbol{S}}^{(l)}},{\boldsymbol{b}}_{k,m}^{(l)} = {\boldsymbol{y}}_{k,m}^{(l)} + {\boldsymbol{d}}_k^{\text{*}} + \gamma _{k,m}^{(l)},{{\boldsymbol{B}}^{(l)}} = \sum\nolimits_{k = 1}^K {\sum\nolimits_{m = 1}^{{N_k}} {{{\boldsymbol{a}}_{k,m}}{{({\boldsymbol{b}}_{k,m}^{(l)})}^{\text{H}}}} } $;
       重复:
          $ {{{\tilde {\boldsymbol B}}}^{(l,q)}} = {{\boldsymbol{B}}^{(l)}} - {{\boldsymbol{A}}_{{\text{neg}}}}{{\boldsymbol{S}}^{(l,q)}} $,利用文献[29]中的算法2求解优化问题式(21), $ q = q + 1 $;
       直到收敛
        $ {{\boldsymbol{S}}^{(l + 1)}} = {{\boldsymbol{S}}^{(l,q)}} $;
        $ {\boldsymbol{u}}_{k,m}^{(l + 1)} = {({{\boldsymbol{S}}^{(l + 1)}})^{\text{H}}}{{\boldsymbol{a}}_{k,m}} - {\boldsymbol{d}}_k^{\text{*}} - \gamma _{k,m}^{(l)} $,计算 $ f(z) $的最小值以及最小值所对应的点 $ {z^{(l + 1)}} $, $ {\boldsymbol{y}}_{k,m}^{(l + 1)} = {\boldsymbol{u}}_{k,m}^{(l + 1)} \cdot \min \left( {\sqrt {{z^{(l + 1)}}} /||{\boldsymbol{u}}_{k,m}^{(l + 1)}|{|_2},1} \right) $;
        $ \gamma _{k,m}^{(l + 1)} = \gamma _{k,m}^{(l)} + {\boldsymbol{y}}_{k,m}^{(l + 1)} - {({{\boldsymbol{S}}^{(l + 1)}})^{\text{H}}}{{\boldsymbol{a}}_{k,m}} - {\boldsymbol{d}}_k^{\text{*}},l = l + 1 $。
     直到收敛
    下载: 导出CSV
  • [1] 肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics&Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
    [2] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120
    [3] HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000.
    [4] SCOTT R. ONR plans EMC2 technology maturation effort[J]. Jane's International Defense Review:IHS Jane's International Defense Review, 2016, 49: 10.
    [5] 唐波, 汤俊, 胡元奎. 基于MIMO阵列的综合射频系统技术研究[J]. 信息对抗技术, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006

    TANG Bo, TANG Jun, and HU Yuankui. Multifunction radio frequency systems based on MIMO array[J]. Information Countermeasure Technology, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006
    [6] TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315
    [7] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [8] AXELSSON S R J. Random noise radar/sodar with ultrawideband waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1099–1114. doi: 10.1109/TGRS.2007.893742
    [9] FIDEN W H and CZUBIAK D W. Radar-compatible data link system (U)[P]. USA Patent, US7298313B1, 2007.
    [10] ELLINGER J, ZHANG Zhiping, WU Zhiqiang, et al. Dual-use multicarrier waveform for radar detection and communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1265–1278. doi: 10.1109/TAES.2017.2780578
    [11] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567

    LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation chirp signal[J]. Journal of Electronics&Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567
    [12] CHEN Xingbo, WANG Xiaomo, ZHANG Zhao, et al. A communication with LFM carrier modulated by MSK scheme[C]. IEEE ICCP2012, Nanjing, China, 2012: 461–463.
    [13] 刘国岁, 顾红, 苏卫民. 随机信号雷达[M]. 北京: 国防工业出版社, 2005: 45–52.

    LIU Guosui, GU Hong, and SU Weimin. Random Signal Radar[M]. Beijing: National Defense Industry Press, 2005: 45–52.
    [14] LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken: J. Wiley & Sons, 2009: 1–20.
    [15] 何团, 唐波, 张玉. 基于加权SPICE的MIMO-STAP稀疏恢复算法[J]. 信号处理, 2019, 35(8): 1417–1424. doi: 10.16798/j.issn.1003-0530.2019.08.017

    HE Tuan, TANG Bo, and ZHANG Yu. Sparse recovery algorithm of MIMO-STAP based on weighted SPICE[J]. Journal of Signal Processing, 2019, 35(8): 1417–1424. doi: 10.16798/j.issn.1003-0530.2019.08.017
    [16] WANG Xuyang, TANG Bo, and ZHANG Ming. Optimisation of practically constrained waveforms for Rician target detection with multiple-input-multiple-output radar[J]. IET Radar,Sonar&Navigation, 2022, 16(7): 1116–1130. doi: 10.1049/rsn2.12247
    [17] 刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547

    LIU Bingfan and CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics&Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
    [18] TANG Bo, WANG Hai, QIN Lilong, et al. Waveform design for dual-function MIMO radar-communication systems[C]. The IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020.
    [19] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [20] SHI Shengnan, WANG Zhaoyi, HE Zishu, et al. Constrained waveform design for dual-functional MIMO radar-communication system[J]. Signal Processing, 2020, 171: 107530. doi: 10.1016/j.sigpro.2020.107530
    [21] FAN Linhui, TANG Bo, HUANG Zhongrui, et al. Designing constant-envelope transmissions for secret communications in MISO wiretap channels[J]. IEEE Access, 2019, 7: 17791–17797. doi: 10.1109/ACCESS.2019.2896406
    [22] 吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105

    WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105
    [23] TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295
    [24] TANG Bo, LIU Jun, WANG Hai, et al. Constrained radar waveform design for range profiling[J]. IEEE Transactions on Signal Processing, 2021, 69: 1924–1937. doi: 10.1109/TSP.2021.3065830
    [25] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning , 2010, 3(1): 1–122. doi: 10.1561/2200000016
    [26] HUNTER D R and LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2004, 58(1): 30–37. doi: 10.1198/0003130042836
    [27] TANG Bo, TUCK J, and STOICA P. Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2020, 68: 2143–2154. doi: 10.1109/TSP.2020.2983833
    [28] TANG Bo and STOICA P. Information-theoretic waveform design for MIMO radar detection in range-spread clutter[J]. Signal Processing, 2021, 182: 107961. doi: 10.1016/j.sigpro.2020.107961
    [29] TROPP J A, DHILLON I S, HEATH R W, et al. Designing structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory, 2005, 51(1): 188–209. doi: 10.1109/TIT.2004.839492
    [30] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 21–58.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  210
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-17
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回