高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁能量收集的无源WiFi物联网散射通信

刘鑫 谢桂辉 唐晓庆

刘鑫, 谢桂辉, 唐晓庆. 基于电磁能量收集的无源WiFi物联网散射通信[J]. 电子与信息学报. doi: 10.11999/JEIT220951
引用本文: 刘鑫, 谢桂辉, 唐晓庆. 基于电磁能量收集的无源WiFi物联网散射通信[J]. 电子与信息学报. doi: 10.11999/JEIT220951
LIU Xin, XIE Guihui, TANG Xiaoqing. Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220951
Citation: LIU Xin, XIE Guihui, TANG Xiaoqing. Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220951

基于电磁能量收集的无源WiFi物联网散射通信

doi: 10.11999/JEIT220951
基金项目: 湖北省自然科学基金(2022CFB379),中山市科技计划项目(2019AG032)
详细信息
    作者简介:

    刘鑫:女,工程师,研究方向为物联网通信、低功耗传感

    谢桂辉:男,讲师,研究方向为射频隐身通信、物联网、保密通信

    唐晓庆:男,副教授,研究方向为无源物联网系统、低功耗物联网散射通信

    通讯作者:

    刘鑫 1163021312@qq.com

  • 中图分类号: TN92

Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting

Funds: The Natural Science Foundation of Hubei Province (2022CFB379), Zhongshan Science and Technology Plan Project (2019AG032)
  • 摘要: 为解决传统的物联网(IoT)通信设备功耗大、需要人工定期维护、频繁更换电池等问题,该文提出一种基于电磁波能量收集的无源WiFi物联网散射通信方法。该方法基于低功耗微处理器实现WiFi反向散射通信,同时利用自身收集的电磁波能量实现系统自供电,具有功耗低、无需电池、体积小、成本低、免人工维护、容易大量部署等诸多优势,可广泛用于物联网领域。
  • 图  1  典型的WiFi信号时域波形

    图  2  基于MCU的无源WiFi通信系统组成

    图  3  无源WiFi发射端信号频谱

    图  4  无源WiFi接收端信号频谱

    图  5  典型的基于射频能量收集的无源物联网通信设备组成框图

    图  6  低功耗启动和电源管理电路方案

    图  7  WiFi散射通信流程

    图  8  无源WiFi通信设备原型样机

    图  9  无源WiFi通信设备核心板的组成及原理框图

    图  10  无源WiFi传感节点的程序流程图

    图  11  无源WiFi传感节点的能量收集和电源管理功能测试

    图  12  无源WiFi散射通信功能测试

    图  13  无源WiFi散射通信功耗的测试结果

    图  14  无源WiFi散射通信测试现场

    图  15  无源WiFi散射通信范围测试结果

    表  1  散射通信技术性能对比

    散射通信技术样机供电样机处理器通信功耗通信速率通信距离(m)
    2016 Passive WiFi [10]市电ASIC/FPGA15~59 μW(仿真)1~11 Mbps9~30
    2017 BLE Backscatter[15]纽扣电池MCU623 μA(样机)1 Mbps13~30
    2020 PV-RFID[21]无源EM432510~45 μW(样机)64~320 kbps4
    2021 RBLE[16]市电ASIC/FPGA37 μW(仿真)17.4 kbps56
    2022 TD FM[22]纽扣电池MCU150 μW(样机)1 kbps20
    本文无源MCU700 μA(样机)1 Mbps15
    下载: 导出CSV
  • [1] SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access, 2020, 8: 23022–23040. doi: 10.1109/ACCESS.2020.2970118
    [2] 郭海潮, 张献, 杨庆新, 等. 空间全向无线电能传输技术研究与应用综述[J/OL]. 中国电机工程学报, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.

    GUO Haichao, ZHANG Xian, YANG Qingxin, et al. Review of research and application of spatial omnidirectional wireless power transmission technology[J/OL]. Proceedings of the CSEE, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.
    [3] 李阳, 石少博, 刘雪莉, 等. 磁场耦合式无线电能传输耦合机构综述[J]. 电工技术学报, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276

    LI Yang, SHI Shaobo, LIU Xueli, et al. Overview of magnetic coupling mechanism for wireless power transfer[J]. Transactions of China Electrotechnical Societ, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276
    [4] LITVIŅENKO A, ĀBOLTIŅŠ A, TJUKOVS S, et al. The impact of waveform on the efficiency of RF to DC conversion using prefabricated energy harvesting device[C]. 2017 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 2017: 61–66.
    [5] BITO J, BAHR R, HESTER J G, et al. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient internet-of-things wireless sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1831–1842. doi: 10.1109/TMTT.2017.2660487
    [6] LIU Ye, LI Dong, DU Bangsong, et al. Rethinking sustainable sensing in agricultural internet of things: From power supply perspective[J]. IEEE Wireless Communications, 2022.
    [7] FRITH J. A Billion Little Pieces: RFID and Infrastructures of Identification[M]. Cambridge: MIT Press, 2019: 93–142.
    [8] 苏健, 杨晓娇, 韩雨. 一种时间高效的易于实现的多标签射频识别技术[J]. 电子学报, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019

    SU Jian, YANG Xiaojiao, and HAN Yu. A time-efficient and easy-to-implement RFID technology for multiple tags[J]. Acta Electronica Sinica, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019
    [9] WANT R. An introduction to RFID technology[J]. IEEE Pervasive Computing, 2006, 5(1): 25–33. doi: 10.1109/MPRV.2006.2
    [10] KELLOGG B, TALLA V, SMITH J R, et al. Passive Wi-Fi: Bringing low power to Wi-Fi transmissions[J]. GetMobile:Mobile Computing and Communications, 2016, 20(3): 38–41. doi: 10.1145/3036699.3036711
    [11] 唐晓庆, 谢桂辉, 佘亚军, 等. 基于MCU的无源Wi-Fi散射通信方法[J]. 电子学报, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007

    TANG Xiaoqing, XIE Guihui, SHE Yajun, et al. Passive Wi-Fi scattering communication method based on MCU[J]. Acta Electronica Sinica, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007
    [12] MIT Technology Review. 10 breakthrough technologies 2016[EB/OL]. https://www.technologyreview.com/lists/technologies/2016/, 2022.
    [13] TALLA V, HESSAR M, KELLOGG B, et al. LoRa backscatter: Enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 105. doi: 10.1145/3130970
    [14] TALLA V, KELLOGG B, GOLLAKOTA S, et al. Battery-free cellphone[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(2): 25. doi: 10.1145/3090090
    [15] ENSWORTH J F and REYNOLDS M S. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) smartphones and tablets[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3360–3368. doi: 10.1109/TMTT.2017.2687866
    [16] CHEN Si, ZHANG Maolin, ZHAO Jia, et al. Reliable and practical Bluetooth backscatter with commodity devices[J]. IEEE/ACM Transactions on Networking, 2021, 29(4): 1717–1729. doi: 10.1109/TNET.2021.3068865
    [17] IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: Towards internet connectivity for implanted devices[C]. The 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 356–369.
    [18] LI Dong. Hybrid active and passive antenna selection for backscatter-assisted MISO systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7258–7269. doi: 10.1109/TCOMM.2020.3014917
    [19] IEEE. IEEE 802.11–2007 IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. New York: IEEE, 2012.
    [20] ZHANG Pengyu, BHARADIA D, JOSHI K, et al. HitchHike: Practical backscatter using commodity WiFi[C]. The 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, USA, 2016: 259–271.
    [21] KANTAREDDY S N R, MATHEWS I, SUN Shijing, et al. Perovskite PV-powered RFID: Enabling low-cost self-powered IoT sensors[J]. IEEE Sensors Journal, 2020, 20(1): 471–478. doi: 10.1109/JSEN.2019.2939293
    [22] HU Jia, ZHONG Linling, MA Tao, et al. Long-range FM backscatter tag with tunnel diode[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(1): 92–95. doi: 10.1109/LMWC.2021.3117033
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  38
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-09-13
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回