高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向服务质量的RIS辅助的多用户NOMA系统功率分配方案

季薇 赵亚楠 刘子卿 李汀 梁彦 宋云超 李飞

季薇, 赵亚楠, 刘子卿, 李汀, 梁彦, 宋云超, 李飞. 面向服务质量的RIS辅助的多用户NOMA系统功率分配方案[J]. 电子与信息学报, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946
引用本文: 季薇, 赵亚楠, 刘子卿, 李汀, 梁彦, 宋云超, 李飞. 面向服务质量的RIS辅助的多用户NOMA系统功率分配方案[J]. 电子与信息学报, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946
JI Wei, ZHAO Yanan, LIU Ziqing, LI Ting, LIANG Yan, SONG Yunchao, LI Fei. QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946
Citation: JI Wei, ZHAO Yanan, LIU Ziqing, LI Ting, LIANG Yan, SONG Yunchao, LI Fei. QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946

面向服务质量的RIS辅助的多用户NOMA系统功率分配方案

doi: 10.11999/JEIT220946
基金项目: 国家自然科学基金 (61871238)
详细信息
    作者简介:

    季薇:女,博士,教授,研究方向为无线通信与通信信号处理、智能信号处理等

    赵亚楠:男,硕士生,研究方向为NOMA系统中的资源分配

    刘子卿:男,硕士生,研究方向为RIS辅助的通信系统

    李汀:男,博士,副教授,研究方向为MIMO 技术、3D MIMO 技术、协作通信等

    梁彦:女,博士,副教授,研究方向为无线通信与移动通信

    宋云超:男,博士,副教授,研究方向为通信信号处理

    李飞:女,博士,教授,研究方向为量子智能计算、群智能和无线通信中的信号处理技术

    通讯作者:

    季薇 jiwei@njupt.edu.cn

  • 中图分类号: TN92

QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS

Funds: The National Natural Science Foundation of China (61871238)
  • 摘要: 可重构智能超表面(RIS)可被视为通信网络中具有特殊功能的“中继”来配合非正交多址接入(NOMA)系统构建一种协同的信息传输方案。考虑到未来物联网(IoT)场景下不同用户设备对服务质量(QoS)的不同需求,该文提出一种RIS辅助的多用户NOMA通信系统模型,并针对两类用户(信息用户和能量用户)的QoS需求设计了一种基于迭代优化的功率分配方法。该方法通过联合设计RIS相移矩阵、基站端波束赋形以及NOMA系统串行干扰消除顺序来最小化系统的总发射功率,以全面减轻通信系统中基站的能耗负担。仿真结果表明,与无RIS的场景相比,RIS辅助的NOMA系统可有效减小基站的能耗;在有RIS的场景下,所提功率分配方法的能耗明显低于RIS端随机选择相位的方式和基站端直接采用迫零波束赋形的方式。
  • 图  1  系统模型

    图  2  RIS元素个数与算法迭代次数图

    图  3  RIS元素个数和基站发射功率图

    图  4  基站天线数目和基站发射功率关系图

    图  5  不同用户SINR门限值和基站发射功率关系图

    算法1 基于半正定松弛的迭代优化算法
     步骤1 通过解决问题P2确定SIC解调顺序$ \{ s(k)\} $
     步骤2 基站端主动波束赋形、RIS端无源波束赋形优化
     (1)初始化${\left\{ { {\boldsymbol{W} } }_{k}\right\} }^{(0)},\;{\left\{ {\theta }_{m}\right\} }^{(0)}$,令$ r = 0,\varepsilon = {10^{ - 3}} $
     (2)在给定RIS相移矩阵$ {\{ {\theta _m}\} ^{(r)}} $的前提下,解决问题P3,并获得基站端的有源波束赋形向量$ {\{ {{\boldsymbol{W}}_k}\} ^{(r + 1)}} $
     (3)在给定基站波束赋形向量$ {\{ {{\boldsymbol{W}}_k}\} ^{(r + 1)}} $的前提下,解决问题P5,并获得RIS端的无源波束赋形向量$ {\{ {\theta _m}\} ^{(r + 1)}} $
     (4)更新r=r+1
     (5)问题目标值的下降低于阈值$ \varepsilon $,跳出循环;
     (6)重复步骤2中的(2)~(5)
      返回SIC解调顺序,基站端有源波束赋形向量,RIS端相移矩阵
    下载: 导出CSV
  • [1] ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
    [2] RAJ R and DIXIT A. An energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6G[J]. IEEE Sensors Journal, 2022, 22(7): 7371–7384. doi: 10.1109/JSEN.2022.3153314
    [3] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [4] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [5] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [6] CHENG Yanyu, LI K H, LIU Yuanwei, et al. Non-orthogonal multiple access (NOMA) with multiple intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7184–7195. doi: 10.1109/TWC.2021.3081423
    [7] YANG Gang, XU Xinyue, and LIANG Yingchang. Intelligent reflecting surface assisted non-orthogonal multiple access[C]. 2020 IEEE Wireless Communications and Networking Conference, Seoul, Korea (South), 2020: 1–6.
    [8] ZUO Jiakuo, LIU Yuanwei, QIN Zhijin, et al. The application of intelligent reflecting surface in downlink NOMA systems[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6.
    [9] DING Zhiguo, SCHOBER R, and POOR H V. On the impact of phase shifting designs on IRS-NOMA[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1596–1600. doi: 10.1109/LWC.2020.2991116
    [10] FANG Fang, XU Yanqing, PHAM Q V, et al. Energy-efficient design of IRS-NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14088–14092. doi: 10.1109/TVT.2020.3024005
    [11] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [12] ZENG Piao, WU Qingqing, and QIAO Deli. Energy minimization for IRS-aided WPCNs with non-linear energy harvesting model[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2592–2596. doi: 10.1109/LWC.2021.3109642
    [13] CHOI J, CANTOS S, and KIM Y H. Low-complexity passive beamforming for IRS-aided uplink NOMA[C]. 2021 International Conference on Information and Communication Technology Convergence, Jeju Island, Korea, 2021: 831–833.
    [14] ESHAGHI M. An energy harvesting solution for IoT sensors using MEMS Technology[D]. [Master dissertation], University of Windsor, 2018.
    [15] PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719–1734. doi: 10.1109/JSAC.2020.3000802
    [16] XU Jie, LIU Liang, and ZHANG Rui. Multiuser MISO beamforming for simultaneous wireless information and power transfer[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4798–4810. doi: 10.1109/TSP.2014.2340817
    [17] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [18] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236
    [19] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2604–2620. doi: 10.1109/JSAC.2020.3007056
    [20] WEI Li, HUANG Chongwen, GUO Qinghua, et al. Joint channel estimation and signal recovery for RIS-empowered multiuser communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4640–4655. doi: 10.1109/TCOMM.2022.3179771
    [21] ZHI Kangda, PAN Cunhua, REN Hong, et al. Reconfigurable intelligent surface-aided MISO systems with statistical CSI: Channel estimation, analysis and optimization[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2021: 576–580.
    [22] SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access[C]. 2013 IEEE 77th Vehicular Technology Conference, Dresden, Germany, 2003: 1–5.
    [23] HUA Meng, WU Qingqing, and POOR H V. Power-efficient passive beamforming and resource allocation for IRS-aided WPCNs[J]. IEEE Transactions on Communications, 2022, 70(5): 3250–3265. doi: 10.1109/TCOMM.2022.3161688
    [24] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  239
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2023-01-20
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回