[1] |
GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704): 1147–1153. doi: 10.1126/science.228.4704.1147
|
[2] |
BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36. doi: 10.1109/MGRS.2013.2244672
|
[3] |
王茂芝. 高光谱遥感影像处理与地质应用若干关键问题研究[D]. [博士论文], 成都理工大学, 2014.WANG Maozhi. Researches on several critical problems of hyperspectral remote sensing image processing and geologic application[D]. [Ph. D. dissertation], Chengdu University of Technology, 2014.
|
[4] |
李畅. 高光谱遥感影像处理中的若干关键技术研究[D]. [博士论文], 华中科技大学, 2018.LI Chang. Research on key technologies of hyperspectral remote sensing imagery[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2018.
|
[5] |
LIU Na, LI Wei, and DU Qian. Unsupervised feature extraction for hyperspectral imagery using collaboration-competition graph[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1491–1503. doi: 10.1109/JSTSP.2018.2877474
|
[6] |
LI Wei, FENG Fubiao, LI Hengchao, et al. Discriminant analysis-based dimension reduction for hyperspectral image classification: A survey of the most recent advances and an experimental comparison of different techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(1): 15–34. doi: 10.1109/MGRS.2018.2793873
|
[7] |
RASTI B, HONG Danfeng, HANG Renlong, et al. Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 60–88. doi: 10.1109/MGRS.2020.2979764
|
[8] |
LIU Na, LI Wei, WANG Yinjian, et al. A survey on hyperspectral image restoration: From the view of low-rank tensor approximation[J]. arXiv: 2205.08839, 2022.
|
[9] |
LIU Na, LI Wei, TAO Ran, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10310–10321. doi: 10.1109/TGRS.2019.2933555
|
[10] |
GRIFFIN M K and BURKE H H K. Compensation of hyperspectral data for atmospheric effects[J]. Lincoln Laboratory Journal, 2003, 14(1): 29–54.
|
[11] |
ZARE A and HO K C. Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing[J]. IEEE Signal Processing Magazine, 2014, 31(1): 95–104. doi: 10.1109/MSP.2013.2279177
|
[12] |
CHANG C I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis[J]. IEEE Transactions on Information Theory, 2000, 46(5): 1927–1932. doi: 10.1109/18.857802
|
[13] |
薛朝辉. 高光谱遥感影像稀疏图嵌入分类研究[D]. [博士论文], 南京大学, 2015.XUE Zhaohui. Hyperspectral remote sensing image classification via sparse graph embedding[D]. [Ph. D. dissertation], Nanjing University, 2015.
|
[14] |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83–98. doi: 10.1109/MSP.2012.2235192
|
[15] |
DONG Xiaowen, THANOU D, TONI L, et al. Graph signal processing for machine learning: A review and new perspectives[J]. IEEE Signal Processing Magazine, 2020, 37(6): 117–127. doi: 10.1109/MSP.2020.3014591
|
[16] |
SELLARS P, AVILES-RIVERO A I, and SCHÖNLIEB C B. Superpixel contracted graph-based learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4180–4193. doi: 10.1109/TGRS.2019.2961599
|
[17] |
LUO Fulin, ZHANG Liangpei, DU Bo, et al. Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5336–5353. doi: 10.1109/TGRS.2020.2963848
|
[18] |
蒋俊正, 蔡万源. 一种基于图信号的高光谱图像去噪方法[P]. 中国专利, 202110216084.2, 2021.JIANG Junzheng and CAI Wanyuan. Graph-signal-based denoising for hyperspectral image[P]. China Patent, 202110216084.2, 2021.
|
[19] |
WANG Si, HUANG Tingzhu, ZHAO Xile, et al. Double reweighted sparse regression and graph regularization for hyperspectral unmixing[J]. Remote Sensing, 2018, 10(7): 1046. doi: 10.3390/rs10071046
|
[20] |
BAI Jun, XIANG Shiming, and PAN Chunhong. A graph-based classification method for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 803–817. doi: 10.1109/TGRS.2012.2205002
|
[21] |
ZHANG Si, TONG Hanghang, XU Jiejun, et al. Graph convolutional networks: A comprehensive review[J]. Computational Social Networks, 2019, 6(1): 11. doi: 10.1186/s40649-019-0069-y
|
[22] |
SHAHRAKI F F and PRASAD S. Graph convolutional neural networks for hyperspectral data classification[C]. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 968–972.
|
[23] |
BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv: 1806.01261, 2018.
|
[24] |
XIA Feng, SUN Ke, YU Shuo, et al. Graph learning: A survey[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 109–127. doi: 10.1109/TAI.2021.3076021
|
[25] |
EGILMEZ H E, PAVEZ E, and ORTEGA A. Graph learning from data under Laplacian and structural constraints[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 825–841. doi: 10.1109/JSTSP.2017.2726975
|
[26] |
王保云, 李沛. 分析大数据: 非规则结构与图信号[J]. 南京邮电大学学报:自然科学版, 2020, 40(5): 112–116. doi: 10.14132/j.cnki.1673-5439.2020.05.012WANG Baoyun and LI Pei. Understanding big data: Irregular structure and graph signal[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition, 2020, 40(5): 112–116. doi: 10.14132/j.cnki.1673-5439.2020.05.012
|
[27] |
CHUNG F R K. Spectral Graph Theory[M]. Providence: American Mathematical Society, 1997: 2–14.
|
[28] |
伊鹏飞. 图信号处理技术及OSM数据压缩的研究[D]. [博士论文], 北京理工大学, 2018.YIN Pengfei. The research on graph signal processing and compression of OSM[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2018.
|
[29] |
池源. 基于图信号处理的空时信号分布式在线重构算法[D]. [硕士论文], 桂林电子科技大学, 2021.CHI Yuan. Distributed online reconstruction algorithms for spatiotemporal signals based on graph signal processing[D]. [Master dissertation], Guilin University of Electronic Technology, 2021.
|
[30] |
杨立山. 图信号采样与重建研究[D]. [博士论文], 北京邮电大学, 2018.YANG Lishan. Research on sampling and reconstruction for graph signals[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2018.
|
[31] |
汪芬. 图信号高效采样方法研究[D]. [博士论文], 西安电子科技大学, 2021.WANG Fen. Research on efficient subset sampling of graph signals[D]. [Ph. D. dissertation], Xidian University, 2021.
|
[32] |
O'SHEA K and NASH R. An introduction to convolutional neural networks[J]. arXiv: 1511.08458, 2015.
|
[33] |
BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: Going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18–42. doi: 10.1109/msp.2017.2693418
|
[34] |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2013.
|
[35] |
DEFFERRARD M, BRESSON X, and VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3844–3852.
|
[36] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[37] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. doi: 10.1109/TNN.2008.2005605
|
[38] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[39] |
PAN Shirui, HU Ruiqi, LONG Guodong, et al. Adversarially regularized graph autoencoder for graph embedding[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 2609–2615.
|
[40] |
KOLDA T G, PINAR A, PLANTENGA T, et al. A scalable generative graph model with community structure[J]. SIAM Journal on Scientific Computing, 2014, 36(5): C424–C452. doi: 10.1137/130914218
|
[41] |
LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[42] |
YAN Shuicheng, XU Dong, ZHANG Benyu, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40–51. doi: 10.1109/TPAMI.2007.250598
|
[43] |
LUNGA D, PRASAD S, CRAWFORD M M, et al. Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning[J]. IEEE Signal Processing Magazine, 2014, 31(1): 55–66. doi: 10.1109/MSP.2013.2279894
|
[44] |
ZOU Jinyi, LI Wei, and DU Qian. Sparse representation-based nearest neighbor classifiers for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2418–2422. doi: 10.1109/LGRS.2015.2481181
|
[45] |
CHEN Xiaochen, WEI Jia, LI Jinhai, et al. Integrating local and global manifold structures for unsupervised dimensionality reduction[C]. 2014 International Joint Conference on Neural Networks, Beijing, China, 2014: 2837–2843.
|
[46] |
LUO Huiwu, TANG Yuanyan, LI Chunli, et al. Local and global geometric structure preserving and application to hyperspectral image classification[J]. Mathematical Problems in Engineering, 2015, 2015: 917259. doi: 10.1155/2015/917259
|
[47] |
WANG Xiaotao and LIU Fang. Weighted low-rank representation-based dimension reduction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1938–1942. doi: 10.1109/LGRS.2017.2743018
|
[48] |
HE Xiaofei and NIYOGI P. Locality preserving projections[C]. The 16th International Conference on Neural Information Processing Systems, Whistler, Canada, 2003: 153–160.
|
[49] |
QIAN Yuntao and YE Minchao. Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 499–515. doi: 10.1109/JSTARS.2012.2232904
|
[50] |
CHANG Yi, YAN Luxin, ZHAO Xile, et al. Weighted low-rank tensor recovery for hyperspectral image restoration[J]. IEEE Transactions on Cybernetics, 2020, 50(11): 4558–4572. doi: 10.1109/TCYB.2020.2983102
|
[51] |
LU Xiaoqiang, WANG Yulong, and YUAN Yuan. Graph-regularized low-rank representation for destriping of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4009–4018. doi: 10.1109/TGRS.2012.2226730
|
[52] |
LIU Na, LI Wei, TAO Ran, et al. Multi-graph-based low-rank tensor approximation for hyperspectral image restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5530314. doi: 10.1109/TGRS.2022.3177719
|
[53] |
ZHANG Kai, WANG Min, YANG Shuyuan, et al. Spatial–spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1030–1040. doi: 10.1109/JSTARS.2017.2785411
|
[54] |
BU Yuanyang, ZHAO Yongqiang, XUE Jize, et al. Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 648–662. doi: 10.1109/TGRS.2020.2992788
|
[55] |
LIU Na, LI We, and TAO Ran. Geometric low-rank tensor approximation for remotely sensed hyperspectral and multispectral imagery fusion[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 2819–2823.
|
[56] |
VADDI R and MANOHARAN P. Hyperspectral image classification using CNN with spectral and spatial features integration[J]. Infrared Physics & Technology, 2020, 107: 103296. doi: 10.1016/j.infrared.2020.103296
|
[57] |
QIN Anyong, SHANG Zhaowei, TIAN Jinyu, et al. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 241–245. doi: 10.1109/LGRS.2018.2869563
|
[58] |
WAN Sheng, GONG Chen, ZHONG Ping, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3162–3177. doi: 10.1109/TGRS.2019.2949180
|
[59] |
HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966–5978. doi: 10.1109/TGRS.2020.3015157
|
[60] |
WAN Sheng, GONG Chen, ZHONG Ping, et al. Hyperspectral image classification with context-aware dynamic graph convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 597–612. doi: 10.1109/TGRS.2020.2994205
|
[61] |
MOU Lichao, LU Xiaoqiang, LI Xuelong, et al. Nonlocal graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8246–8257. doi: 10.1109/TGRS.2020.2973363
|
[62] |
LIU Qichao, XIAO Liang, YANG Jingxiang, et al. CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8657–8671. doi: 10.1109/TGRS.2020.3037361
|
[63] |
HE Xin, CHEN Yushi, and GHAMISI P. Dual graph convolutional network for hyperspectral image classification with limited training samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5502418. doi: 10.1109/TGRS.2021.3061088
|
[64] |
STANKOVIC L, MANDIC D, DAKOVIC M, et al. Graph signal processing--Part I: Graphs, graph spectra, and spectral clustering[J]. arXiv: 1907.03467, 2019.
|
[65] |
ZENG Hao, LIU Qingjie, ZHANG Mingming, et al. Semi-supervised hyperspectral image classification with graph clustering convolutional networks[J]. arXiv: 2012.10932, 2020.
|
[66] |
XI Bobo, LI Jiaojiao, LI Yunsong, et al. Semisupervised cross-scale graph prototypical network for hyperspectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, To be published.
|
[67] |
LI Yunsong, XI Bobo, LI Jiaojiao, et al. SGML: A symmetric graph metric learning framework for efficient hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 609–622. doi: 10.1109/JSTARS.2021.3135548
|
[68] |
Grupo de Inteligencia Computacional (GIC). Hyperspectral remote sensing scenes[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, 2021.
|