高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于检测-跟踪联动的紧凑型高频地波雷达弱目标自适应检测方法

孙伟峰 李小彤 纪永刚 戴永寿

孙伟峰, 李小彤, 纪永刚, 戴永寿. 基于检测-跟踪联动的紧凑型高频地波雷达弱目标自适应检测方法[J]. 电子与信息学报, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811
引用本文: 孙伟峰, 李小彤, 纪永刚, 戴永寿. 基于检测-跟踪联动的紧凑型高频地波雷达弱目标自适应检测方法[J]. 电子与信息学报, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811
SUN Weifeng, LI Xiaotong, JI Yonggang, DAI Yongshou. An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811
Citation: SUN Weifeng, LI Xiaotong, JI Yonggang, DAI Yongshou. An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811

基于检测-跟踪联动的紧凑型高频地波雷达弱目标自适应检测方法

doi: 10.11999/JEIT220811
基金项目: 国家自然科学基金(62071493, 61831010)
详细信息
    作者简介:

    孙伟峰:男,副教授,研究方向为紧凑型高频地波雷达目标探测与跟踪、图像处理等

    李小彤:女,硕士生,研究方向为紧凑型高频地波雷达目标探测与跟踪

    纪永刚:男,教授,研究方向为紧凑型高频地波雷达目标探测、海上目标多手段融合探测、新体制超视距雷达海态监测等

    戴永寿:男,教授,研究方向为地震信号处理、海洋环境监测等

    通讯作者:

    孙伟峰 sunwf@upc.edu.cn

  • 中图分类号: TN953

An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar

Funds: The National Natural Science Foundation of China (62071493, 61831010)
  • 摘要: 紧凑型地波雷达发射功率低、回波信噪比低,目标检测难度大,在目标跟踪时由于目标漏检经常出现航迹断裂。为了提升其目标检测性能,提出了一种基于检测-跟踪联动的弱目标自适应检测方法。当跟踪器检测到目标航迹无法关联到新点迹时,将当前目标预测状态反馈至检测器;检测器在距离-多普勒谱上建立局部检测波门,采用二元假设检验法感知波门内的检测背景,根据不同的检测背景选取适用的检测门限调整方法,降低恒虚警检测的门限,判定是否有弱目标被检出。若能够检出目标,对其进行测向后将新点迹发送至跟踪器进行处理。利用实测数据开展了目标检测与跟踪实验,结果表明:与先检测后跟踪方法相比,该方法得到的目标航迹时长增加了29.76%,平均延长了19.25 min。
  • 图  1  先检测后跟踪方法流程图

    图  2  基于检测-跟踪联动的弱目标自适应检测方法示意图

    图  3  地波雷达目标跟踪过程示意图

    图  4  目标航迹个例

    图  5  目标个例1的跟踪结果对比及检测门限自适应调整过程

    图  6  目标个例2跟踪结果对比

    图  7  目标个例3跟踪结果对比

    图  8  目标个例4跟踪结果对比

    图  9  检测门限调整方法选取不当时的跟踪结果对比

    图  10  本文方法与UKF+JPDA方法的跟踪结果对比

    算法1 基于梯度下降法的检测门限调整方法步骤
     输入:门限因子的初值${T_0}$与终值$\hat T$、梯度下降步长$\alpha $、参考单元
     个数$N$、$k + 1$时刻的R-D谱数据、初始虚警率$ {P_{{{\text{f}}_0}}} $、方位角预测
     值$\theta _{k + 1}^{\text{p}}$及点迹-航迹关联波门的方位角阈值${ {\boldsymbol{\varTheta } }_{ {\text{th} } } }$
     输出:新检出目标点迹${\boldsymbol{x}}_{k + 1}^{\text{m}} = {\left[ {v_{k + 1}^{\text{m}},r_{k + 1}^{\text{m}},\theta _{k + 1}^{\text{m}}} \right]^{\text{T}}}$(上角标
     ${\text{m}}$表示量测状态)
     算法步骤:
     (1) 初始化迭代次数$n = 0$,$T = {T_0}$;
     (2) 根据式(8)计算函数$T$在${P_{{{\text{f}}_n}}}$处的梯度$\nabla T$:
          $\nabla T = \dfrac{ {\partial T} }{ {\partial {P_{ { {\text{f} }_n} } } }} = - {P_{ { {\text{f} }_n} } }^{\left( { - \frac{1}{N} - 1} \right)}$      (8)
     (3) 根据式(9)求得当前$T$的下降距离$d$:
              $ d = - \alpha \times \nabla T $           (9)
     (4) $n = n + 1$,将门限因子$T$更新为$T = T - d$,并根据式(2)计
     算$T$对应的虚警率${P_{{{\text{f}}_n}}}$;
     (5) 判断是否满足$T \le \hat T$。若满足,则终止算法;若未满足,则
     转入步骤(6);
     (6) 采用门限因子$T$对应的检测门限在当前R-D谱数据的局部检
     测波门内进行目标检测,若无新目标检出,则转入步骤(2);若
     有新目标检出,则转入步骤(7);
     (7) 对新检出的目标进行方位角估计,判断方位角$\theta _{k + 1}^{\text{m}}$是否满足
     $\left| {\theta _{k + 1}^{\text{m} } - \theta _{k + 1}^{\text{p} } } \right| < { {\boldsymbol{\varTheta } }_{ {\text{th} } } }$,若满足,则认为该目标为与断裂航迹匹
     配的漏检目标,并输出新检出的目标点迹
     ${\boldsymbol{x}}_{k + 1}^{\text{m}} = {\left[ {v_{k + 1}^{\text{m}},r_{k + 1}^{\text{m}},\theta _{k + 1}^{\text{m}}} \right]^{\text{T}}}$;若不满足,则转入步骤(2)。
    下载: 导出CSV

    表  1  基于实测数据的航迹跟踪时长对比(min)

    方法目标个例1目标个例2目标个例3目标个例4
    CMKF+NNDA方法785773100
    本文方法9110285107
    下载: 导出CSV
  • [1] SUN Weifeng, JI Mengjie, HUANG Weimin, et al. Vessel tracking using bistatic compact HFSWR[J]. Remote Sensing, 2020, 12(8): 1266. doi: 10.3390/rs12081266
    [2] 戴永寿, 马鹏, 孙伟峰, 等. 基于JVC的紧凑型地波雷达海上目标点迹-航迹最优关联方法[J]. 电子与信息学报, 2021, 43(10): 2832–2839. doi: 10.11999/JEIT200604

    DAI Yongshou, MA Peng, SUN Weifeng, et al. An optimal plot-to-track association method based on JVC algorithm for maritime target with compact HFSWR[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2832–2839. doi: 10.11999/JEIT200604
    [3] SUN Weifeng, HUANG Weimin, JI Yonggang, et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1041–1051. doi: 10.1109/TGRS.2019.2943065
    [4] SUN Weifeng, PANG Zhenzhen, HUANG Weimin, et al. Vessel velocity estimation and tracking from Doppler echoes of T/R-R composite compact HFSWR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4427–4440. doi: 10.1109/JSTARS.2021.3071625
    [5] 杨威, 付耀文, 潘晓刚, 等. 弱目标检测前跟踪技术研究综述[J]. 电子学报, 2014, 42(9): 1786–1793. doi: 10.3969/j.issn.0372-2112.2014.09.019

    YANG Wei, FU Yaowen, PAN Xiaogang, et al. Track-before-detect technique for dim targets: An overview[J]. Acta Electronica Sinica, 2014, 42(9): 1786–1793. doi: 10.3969/j.issn.0372-2112.2014.09.019
    [6] 王国宏, 李岳峰, 于洪波, 等. 三维空间中高超声速目标修正三级Hough变换-检测前跟踪算法[J]. 电子与信息学报, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622

    WANG Guohong, LI Yuefeng, YU Hongbo, et al. Modified triple-stage Hough transform track-before-detect algorithm in three-dimensional space for hypersonic target[J]. Journal of Electronics &Information Technology, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622
    [7] 柳超, 孙进平, 袁常顺, 等. Geodesic流多伯努利检测前跟踪方法[J]. 电子学报, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.017

    LIU Chao, SUN Jinping, YUAN Changshun, et al. Multi-Bernoulli track-before-detect method with Geodesic flow[J]. Acta Electronica Sinica, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.017
    [8] 卢锦, 王鑫. 基于代价参考粒子滤波器组的检测前跟踪算法[J]. 电子与信息学报, 2021, 43(10): 2815–2823. doi: 10.11999/JEIT210234

    LU Jin and WANG Xin. Cost-reference particle filter bank based track-before-detecting algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2815–2823. doi: 10.11999/JEIT210234
    [9] BAO Zhichao, JIANG Qiuxi, and LIU Fangzheng. Multiple model efficient particle filter based track-before-detect for maneuvering weak targets[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 647–656. doi: 10.23919/JSEE.2020.000040
    [10] GROSSI E, LOPS M, and VENTURINO L. A novel dynamic programming algorithm for track-before-detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. doi: 10.1109/TSP.2013.2251338
    [11] REED I S, GAGLIARDI R M, and SHAO H M. Application of three-dimensional filtering to moving target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 898–905. doi: 10.1109/TAES.1983.309401
    [12] YAN Bo, PAOLINI E, XU Luping, et al. A target detection and tracking method for multiple radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–21. doi: 10.1109/TGRS.2022.3183387
    [13] 邹鲲, 廖桂生, 李军, 等. 非高斯杂波下知识辅助检测器敏感性分析[J]. 电子与信息学报, 2014, 36(1): 181–186. doi: 10.3724/SP.J.1146.2013.00320

    ZOU Kun, LIAO Guisheng, LI Jun, et al. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics &Information Technology, 2014, 36(1): 181–186. doi: 10.3724/SP.J.1146.2013.00320
    [14] 卢术平, 宋海洋, 易伟, 等. 基于雷达知识库的知识辅助恒虚警检测算法[J]. 现代雷达, 2017, 39(6): 46–49. doi: 10.16592/j.cnki.1004-7859.2017.06.010

    LU Shuping, SONG Haiyang, YI Wei, et al. Knowledge-aided CFAR algorithm based on radar knowledge base[J]. Modern Radar, 2017, 39(6): 46–49. doi: 10.16592/j.cnki.1004-7859.2017.06.010
    [15] 刘红亮, 周生华, 刘宏伟, 等. 一种航迹恒虚警的目标检测跟踪一体化算法[J]. 电子与信息学报, 2016, 38(5): 1072–1078. doi: 10.11999/JEIT150638

    LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1072–1078. doi: 10.11999/JEIT150638
    [16] 鲁瑞莲. 基于信息辅助的雷达检测跟踪一体化方法研究[D]. [硕士论文], 西安电子科技大学, 2018.

    LU Ruilian. Study of information aided radar detection and tracking coprocessing[D]. [Master dissertation], Xidian University, 2018.
    [17] CAI Jiajia, ZHOU Hao, HUANG Weimin, et al. Ship detection and direction finding based on time-frequency analysis for compact HF radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 72–76. doi: 10.1109/LGRS.2020.2967387
    [18] 梁建. 高频地波雷达目标二维CFAR检测及软件实现[D]. [硕士论文], 中国海洋大学, 2014.

    LIANG Jian. Target CFAR detection method and software implementation with two-dimension data for HFSWR[D]. [Master dissertation], Ocean University of China, 2014.
    [19] GOLDMAN H. Performance of the excision CFAR detector in the presence of interferers[J]. IEE Proceedings F (Radar and Signal Processing), 1990, 137(3): 163–171. doi: 10.1049/ip-f-2.1990.0024
    [20] BORDONARO S, WILLETT P, and BAR-SHALOM Y. Decorrelated unbiased converted measurement Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1431–1444. doi: 10.1109/TAES.2014.120563
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  666
  • HTML全文浏览量:  131
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2023-02-06
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回