高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法

唐伦 文明艳 单贞贞 陈前斌

唐伦, 文明艳, 单贞贞, 陈前斌. 移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法[J]. 电子与信息学报, 2023, 45(7): 2406-2414. doi: 10.11999/JEIT220797
引用本文: 唐伦, 文明艳, 单贞贞, 陈前斌. 移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法[J]. 电子与信息学报, 2023, 45(7): 2406-2414. doi: 10.11999/JEIT220797
TANG Lun, WEN Mingyan, SHAN Zhenzhen, CHEN Qianbin. Collision Warning Algorithm Based on Efficient Federated Learning in Mobile Edge Computing Assisted Intelligent Driving[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2406-2414. doi: 10.11999/JEIT220797
Citation: TANG Lun, WEN Mingyan, SHAN Zhenzhen, CHEN Qianbin. Collision Warning Algorithm Based on Efficient Federated Learning in Mobile Edge Computing Assisted Intelligent Driving[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2406-2414. doi: 10.11999/JEIT220797

移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法

doi: 10.11999/JEIT220797
基金项目: 国家自然科学基金(62071078),四川省科技计划(2021YFQ0053) ,重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    唐伦:男,教授,博士生导师,研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    文明艳:女,硕士生,研究方向为移动边缘计算辅助智能驾驶技术、联邦学习效率优化等

    单贞贞:女,硕士生,研究方向为边缘智能协同计算资源分配、联邦学习资源协同优化等

    陈前斌:男,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    文明艳 wenming155968@163.com

  • 中图分类号: TN929.5

Collision Warning Algorithm Based on Efficient Federated Learning in Mobile Edge Computing Assisted Intelligent Driving

Funds: The National Natural Science Foundation of China (62071078), Sichuan Science and Technology Program(2021YFQ0053), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要: 智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参数:本地训练次数和参与聚合的局部模型数量。然后,为解决资源受限的移动边缘计算(MEC)下碰撞预警模型协作训练的效率问题,根据上述参数与SFLAAP训练时延的关系,建立训练总时延最小化模型,并将其转化为马尔可夫决策过程(MDP)。最后,在所建立的MDP中采用异步优势演员-评论家(A3C)学习求解,自适应地确定最优训练参数,从而减少碰撞预警模型的训练完成时间。仿真结果表明,所提算法有效地降低训练总时延并保证预测精度。
  • 图  1  系统场景

    图  2  基于SFLAAP的GRU_SVM碰撞多级预警方案的训练过程

    图  3  SFLAAP示意图

    图  4  3种模型的预测性能对比

    图  5  DRL的训练收敛性能

    图  6  不同算法的模型性能对比

    算法1 基于A3C的SFLAAP算法
     输入:全局参数$ {{\mathbf{\theta }}_a} $和$ {{\mathbf{\theta }}_c} $,折扣因子$\gamma $,熵超参数$\beta $,主Agent的最
     大步数${T_{ {{\rm{global}} - {\rm{max}}} } }$和步数${t_{ { {\rm{global} } } } } = 0$,子Agent的最大步数
     ${T_{ {{\rm{local}} - {\rm{max}}} } }$和步数${t_{ {{\rm{local}}} } } = 0$,主Agent的更新频率${T_{ {{\rm{up}}} } }$,actor和
     critic的学习步长${\alpha _1}$和${\alpha _2}$
     输出:最优动作$a'$
     (1) for epoch $ k \in \{ 1,2,\cdots,K\} $ do
     (2)   for ${t_{ {{\rm{global}}} } } \le {T_{ {{\rm{global}} - {\rm{max}}} } }$ do
     (3)     ${\rm{d}}{ {\mathbf{\theta } }_a} \leftarrow 0$, ${\rm{d}}{ {\mathbf{\theta } }_c} \leftarrow 0$, ${ {\mathbf{\theta } }'_a} = { {\mathbf{\theta } }_a}$, ${ {\mathbf{\theta } }'_c} = { {\mathbf{\theta } }_c}$
     (4)     for ${t_{ {{\rm{local}}} } } \in \{ 0,1,\cdots,{T_{ {{\rm{local - {\rm{max}}}}} } }\}$ do
     (5)       actor网络根据策略获得SFLAAP参数取值动作
     (6)       由式(15)得到奖励${r_t}$和下一个状态${s_{t + 1}}$
     (7)       if ${s_t} \ne { {\rm{termina} } }{ {{\rm{l}}}^{} }{s_t}$或${t_{ {{\rm{local}}} } }\% ({T_{ {{\rm{up}}} } } - 1) \ne 0$ then
     (8)         将${\rm{d}}{ {\mathbf{\theta } }_a}$,${\rm{d}}{ {\mathbf{\theta } }_c}$推送至主Agent进行异步更新
     (9)         ${ {\mathbf{\theta } }_a} \leftarrow { {\mathbf{\theta } }_a} + {\alpha _1}{\rm{d}}{ {\mathbf{\theta } }_a}$和${ {\mathbf{\theta } }_c} \leftarrow { {\mathbf{\theta } }_c} + {\alpha _2}{\rm{d}}{ {\mathbf{\theta } }_c}$
     (10)       子Agent的critic网络获得$V({s_t};{{\boldsymbol{\theta}} '_c} )$
     (11)       for $t = {t_{ { {\rm{local} } } } },{t_{ { {\rm{local} } } } } - 1,\cdots,{t_{ { {\rm{local} } } } } + 1 - {T_{ {{\rm{up}}} } }$ do
     (12)        $V({s_t};{{\boldsymbol{\theta}} '_c} ) \leftarrow {r_t} + \gamma V({s_t};{{\boldsymbol{\theta}} '_c})$
     (13)        计算全局actor网络的累积梯度:
          ${\boldsymbol{d} }{ {\mathbf{\theta } }_a} \leftarrow {\boldsymbol{d} }{ {\mathbf{\theta } }_a} + { { {\text{∇} } } _{ {{\boldsymbol{\theta}} '_a} } }\log \pi ({a_t}|{s_t};{ {\boldsymbol{\theta} } '_a} )A({s_t},{a_t};{ {\boldsymbol{\theta} } '_c} )$
          $+ \beta { {\text{∇} } _{ {{\boldsymbol{\theta}} '_a} } }H(\pi ({s_t};{ {\boldsymbol{\theta} } '_a} ))$
     (14)       计算全局critic网络的累积梯度:
       ${\rm{d}}{ {\mathbf{\theta } }_c} \leftarrow {\rm{d}}{ {\mathbf{\theta } }_c} + \partial {(A({s_t},{a_t};{ {\boldsymbol{\theta} }' _c} ))^2}/\partial { {\boldsymbol{\theta} } _c}$
     (15)      end for
     (16)     end if
     (17)    end for
     (18)    ${t_{ {{\rm{global}}} } } = {t_{ {{\rm{global}}} } } + 1$
     (19)   end for
     (20)   选择最优动作${a'_k} = ({\tau _k},{N_k})$
     (21)   在图2的步骤(7)中,根据最优动作${a'_k}$更新${\tau _{k + 1}}$和${N_{k + 1}}$
     (22) end for
    下载: 导出CSV

    表  1  SVM分类结果

    准确度召回率F1分数精度
    00.970.980.970.96
    10.840.780.80
    20.900.910.90
    宏平均0.900.890.89
    下载: 导出CSV
  • [1] SONG Wenjie, YANG Yi, FU Mengyin, et al. Real-time obstacles detection and status classification for collision warning in a vehicle active safety system[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 758–773. doi: 10.1109/TITS.2017.2700628
    [2] WINKLER S, WERNEKE J, and VOLLRATH M. Timing of early warning stages in a multi stage collision warning system: Drivers’ evaluation depending on situational influences[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2016, 36: 57–68. doi: 10.1016/j.trf.2015.11.001
    [3] LYU Nengchao, WEN Jiaqiang, DUAN Zhicheng, et al. Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 966–981. doi: 10.1109/TITS.2020.3019050
    [4] XU Meiling, HAN Min, CHEN C L P, et al. Recurrent broad learning systems for time series prediction[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1405–1417. doi: 10.1109/TCYB.2018.2863020
    [5] XIANG Xuehai, QIN Wenhu, and XIANG Binfu. Research on a DSRC-based rear-end collision warning model[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1054–1065. doi: 10.1109/TITS.2013.2293771
    [6] HUANG Chen, HE Ruisi, AI Bo, et al. Artificial intelligence enabled radio propagation for communications—part I: Channel characterization and antenna-channel optimization[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 3939–3954. doi: 10.1109/TAP.2022.3149663
    [7] HUANG Chen, HE Ruisi, AI Bo, et al. Artificial intelligence enabled radio propagation for communications—part II: Scenario identification and channel modeling[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 3955–3969. doi: 10.1109/TAP.2022.3149665
    [8] ZHOU Aojun, MA Yukun, ZHU Junnan, et al. Learning N: M fine-grained structured sparse neural networks from scratch[C/OL]. The 9th International Conference on Learning Representations, 2021.
    [9] DU Yuqing, YANG Sheng, and HUANG Kaibin. High-dimensional stochastic gradient quantization for communication-efficient edge learning[J]. IEEE Transactions on Signal Processing, 2020, 68: 2128–2142. doi: 10.1109/TSP.2020.2983166
    [10] YAO Xin, HUANG Chaofeng, and SUN Lifeng. Two-stream federated learning: Reduce the communication costs[C]. 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, China, 2018: 1–4.
    [11] WANG Luping, WANG Wei, and LI Bo. CMFL: Mitigating communication overhead for federated learning[C]. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, USA, 2019: 954–964.
    [12] LIU Jianchun, XU Hongli, WANG Lun, et al. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 674–690. doi: 10.1109/TMC.2021.3096846
    [13] SPRAGUE M R, JALALIRAD A, SCAVUZZO M, et al. Asynchronous federated learning for geospatial applications[C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Dublin, Ireland, 2018: 21–28.
    [14] PUNZO V, BORZACCHIELLO M T, and CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6): 1243–1262. doi: 10.1016/j.trc.2010.12.007
    [15] WANG Xin, LIU Jing, QIU Tie, et al. A real-time collision prediction mechanism with deep learning for intelligent transportation system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9497–9508. doi: 10.1109/TVT.2020.3003933
    [16] LUO Bing, LI Xiang, WANG Shiqiang, et al. Cost-effective federated learning in mobile edge networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3606–3621. doi: 10.1109/JSAC.2021.3118436
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  475
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-08-28
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回