高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机

叶子豪 鄢社锋 杨斌斌

叶子豪, 鄢社锋, 杨斌斌. 基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机[J]. 电子与信息学报, 2023, 45(7): 2519-2527. doi: 10.11999/JEIT220794
引用本文: 叶子豪, 鄢社锋, 杨斌斌. 基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机[J]. 电子与信息学报, 2023, 45(7): 2519-2527. doi: 10.11999/JEIT220794
YE Zihao, YAN Shefeng, YANG Binbin. MIMO-OFDM Underwater Acoustic Communication Receiver Based on Intercarrier Interference Depth Estimation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2519-2527. doi: 10.11999/JEIT220794
Citation: YE Zihao, YAN Shefeng, YANG Binbin. MIMO-OFDM Underwater Acoustic Communication Receiver Based on Intercarrier Interference Depth Estimation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2519-2527. doi: 10.11999/JEIT220794

基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机

doi: 10.11999/JEIT220794
基金项目: 国家自然科学基金(62192711, 61725106)
详细信息
    作者简介:

    叶子豪:男,博士生,研究方向为水声信道估计与信道均衡

    鄢社锋:男,研究员,教授,研究方向为阵列信号处理、水声通信等

    杨斌斌:男,博士生,研究方向为水声信道估计与信道均衡

    通讯作者:

    鄢社锋 sfyan@ieee.org

  • 中图分类号: TN929.3

MIMO-OFDM Underwater Acoustic Communication Receiver Based on Intercarrier Interference Depth Estimation

Funds: The National Natural Science Foundation of China (62192711, 61725106)
  • 摘要: 多输入多输出正交频分复用(MIMO-OFDM)水声通信系统中,由于子载波间干扰(ICI)对信号的影响程度未知,导致接收处理时干扰消除不完全或计算复杂度高。针对这一问题,该文提出一种迭代的基于子载波间干扰深度估计的MIMO-OFDM接收机。该接收机使用导频频域相关对每个发射信号的子载波间干扰深度进行估计,信道估计时利用估计出的干扰深度重建各个信道的频域矩阵,避免对不同信道选择相同的干扰深度,在自适应信道变化的同时降低了计算复杂度。此外,将判决反馈均衡引入MIMO-OFDM水声通信系统,利用已均衡出的符号信息消除子载波间干扰。仿真结果表明,该接收机相比于干扰深度渐进的接收机,译码成功所需的时间更短。
  • 图  1  基于子载波间干扰深度估计的MIMO-OFDM接收机结构

    图  2  多普勒因子估计算法的译码误码率与信噪比关系

    图  3  ${\text{SNR}} = 15{\text{ dB}}$时不同干扰深度的接收机译码误码率与最大多普勒因子关系

    图  4  各接收机译码误码率与信噪比关系

    图  5  各接收机译码成功所需平均时间

    表  1  水声通信系统仿真参数设置

    仿真参数符号
    最低子载波频率${f_0}$9 kHz
    信号带宽$B$6 kHz
    子载波数$K$1024
    OFDM符号周期$T$170.65 ms
    子载波间隔$\Delta f$5.86 Hz
    零后缀长度${T_g}$15 ms
    下载: 导出CSV
  • [1] HUANG Jianguo, WANG Han, HE Chengbing, et al. Underwater acoustic communication and the general performance evaluation criteria[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(8): 951–971. doi: 10.1631/FITEE.1700775
    [2] LI Baosheng, HUANG Jie, ZHOU Shengli, et al. MIMO-OFDM for high-rate underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 634–644. doi: 10.1109/JOE.2009.2032005
    [3] TAO Jun and ZHENG Y R. Turbo detection for MIMO–OFDM underwater acoustic communications[J]. International Journal of Wireless Information Networks, 2013, 20(1): 27–38. doi: 10.1007/s10776-012-0182-4
    [4] WANG Shuche, HE Zhiqiang, NIU Kai, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2601–2612. doi: 10.1109/TWC.2020.2966622
    [5] 强夕竹, 乔钢, 周锋. 一种改进的水声正交频分复用稀疏信道时延估计算法[J]. 电子与信息学报, 2021, 43(3): 817–825. doi: 10.11999/JEIT200660

    QIANG Xizhu, QIAO Gang, and ZHOU Feng. An improved delay estimation algorithm for underwater acoustic OFDM sparse channel[J]. Journal of Electronics &Information Technology, 2021, 43(3): 817–825. doi: 10.11999/JEIT200660
    [6] BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708–1721. doi: 10.1109/TSP.2009.2038424
    [7] HUANG Jianzhong, ZHOU Shengli, and WANG Zhaohui. Performance results of two iterative receivers for distributed MIMO OFDM with large Doppler deviations[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 347–357. doi: 10.1109/JOE.2012.2223991
    [8] LI Hua, DONG Yuanyuan, GONG Caihong, et al. A non-gaussianity-aware receiver for impulsive noise mitigation in underwater communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6018–6028. doi: 10.1109/TVT.2021.3079469
    [9] ZHAO Shiduo, YAN Shefeng, and XI Junyi. Bidirectional soft-decision feedback equalization for OFDM systems[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1283–1286. doi: 10.1109/LWC.2020.2988659
    [10] HWANG S J and SCHNITER P. Efficient multicarrier communication for highly spread underwater acoustic channels[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1674–1683. doi: 10.1109/JSAC.2008.081207
    [11] LEUS G and VAN WALREE P A. Multiband OFDM for covert acoustic communications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1662–1673. doi: 10.1109/JSAC.2008.081206
    [12] HUANG Jianzhong, ZHOU Shengli, HUANG Jie, et al. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1524–1536. doi: 10.1109/JSTSP.2011.2160040
    [13] HUANG Jianzhong, ZHOU Shengli, HUANG Jie, et al. Progressive intercarrier and co-channel interference mitigation for underwater acoustic multi-input multi-output orthogonal frequency-division multiplexing[J]. Wireless Communications and Mobile Computing, 2014, 14(3): 321–338. doi: 10.1002/wcm.1251
    [14] QIAO Gang, BABAR Z, ZHOU Feng, et al. Low-Complexity progressive MIMO-OFDM receiver for underwater acoustic communication[J]. Symmetry, 2019, 11(3): 362. doi: 10.3390/sym11030362
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  434
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-10-24
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回