## 留言板

 引用本文: 李风从, 仝方遒, 孙思博, 冯翔, 赵宜楠. 基于迭代最小二乘的水下三维高鲁棒性定位算法[J]. 电子与信息学报.
LI Fengcong, TONG Fangqiu, SUN Sibo, FENG Xiang, ZHAO Yinan. A Highly Robust Underwater 3D Localization Algorithm Based on Iterative Least Square[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220792
 Citation: LI Fengcong, TONG Fangqiu, SUN Sibo, FENG Xiang, ZHAO Yinan. A Highly Robust Underwater 3D Localization Algorithm Based on Iterative Least Square[J]. Journal of Electronics & Information Technology.

## 基于迭代最小二乘的水下三维高鲁棒性定位算法

##### doi: 10.11999/JEIT220792

###### 通讯作者: 仝方遒　tongfangqiu2021@163.com
• 中图分类号: TN929.3

## A Highly Robust Underwater 3D Localization Algorithm Based on Iterative Least Square

• 摘要: 为解决基于空间角信息水下3维定位中，闭式解算法中定位性能无法达到克拉默-拉奥界和牛顿迭代算法初始值选取问题，该文利用一种基于迭代最小二乘的高鲁棒性算法修正闭式解的残差项与选取迭代算法的初始值。利用伪线性加权最小二乘算法得到闭式解作为正则化修正迭代法的初始值，将迭代结果修正闭式解算法的残差项，通过迭代最小二乘法的交替运算，得到稳定精确的解。通过仿真验证了基于迭代最小二乘算法的高鲁棒性，消除伪线性加权最小二乘算法中残差项选取的不利影响，解决了迭代法初始值选取问题，得到与收敛情况下迭代法相近的定位性能。
• 图  1  基于空间角信息的水下3维定位模型

图  2  6浮标下GDOP等高线图

图  3  残差项与初值偏差鲁棒性分析

图  4  不同算法随角度噪声变化关系曲线

图  5  不同算法下站址误差鲁棒性分析

图  6  不同算法随距离变化性能曲线

•  [1] 张同伟, 王向鑫, 唐嘉陵, 秦升杰等. 深海超短基线定位系统现状及展望[J]. 舰船电子工程, 2018, 38(10): 1–6.ZHANG Tongwei, WANG Xiangxin, TANG Jialing, QIN Shengjieet al. Technical status and development trend of long range USBL[J]. Ship Electronic Engineering, 2018, 38(10): 1–6. [2] B GUO Bo, J MA Jianye, and J GUAN Juhua. Performance comparison among the various underwater acousitic positioning algorithms[C]. Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2021: 92–95. [3] H T SHENG Huantang, W R WU Wenrong, W H. HSIAO W H, and M Servetnyket al. Joint channel and AoA estimation in OFDM systems: One channel tap with multiple AoAs problem[J]. IEEE Communications Letters, 2021, 25(7): 2245–2249. [4] X ZHU Xiaodan, W ZHU Weiqiang, and Z CHEN Zhuo. Direct localization based on motion analysis of single-station using TOA[C]. Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2018: 1823–1827. [5] J ZHU Junjie, E KOUDA E, P HOU Pengcheng, K Nagayama, Y Hou and S Dennoet al. Indoor simultaneous TOA estimation of multiple users using leaky coaxial cable[C]. Proceedings of the 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, 2022: 297–298. [6] L WANG Lijuan, D SU Dan, M LIU Mei and X Du, et al. Modified zeroing neurodynamics models for range-based WSN localization from AOA and TDOA measurements[J]. IEEE Sensors Journal, 2022, 22(23): 13716–13726. [7] J PAN Jianghuai. Multi-station TDOA localization method based on tikhonov regularization[C]. Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi'an, China, 2022: 1903–1906. [8] 韩云峰, 李昭, 郑翠娥, 孙大军等. 一种基于长基线交汇的超短基线定位系统精度评价方法[J]. 物理学报, 2015, 64(09): 094301350–356.HAN Yunfeng, LI Zhao, ZHENG Cuie, SUN Dajunet al. A precision evaluation metho d of USBL p ositioning systems based on LBL triangulationAn evaluation method of ultra short baseline positioning system accuracy based on long baseline intersection[J]. Acta Physica Sinica, 2015, 64(09): 094301350–356. [9] 梁国龙, 张毅锋, 付进. 利用夹角几何关系的超短基线定位方法[J]. 哈尔滨工程大学学报, 2019, 40(08): 1474–1479.LIANG Guolong, ZHANG Yifeng, and FU Jin. Angle-based underwater source localization for USBLAngle-based underwater source localization for USBL[J]. Journal of Harbin Engineering University, 2019, 40(08): 1474–1479. [10] Y ZHOU Yifan, Y WANG Yingmin, R NIE Ruixin, Q Cheng and G Zhuet al. Optimal location method of spontaneous data fusion based on TDOA / AOA[C]. Proceedings of 2021 OES China Ocean Acoustics (COA), Harbin, China, 2021: 885–889. [11] K HAO Kun, Q XUE Qixin, C LI Cheng, et aland K Yu. A hybrid localization algorithm based on doppler shift and AOA for an underwater mobile node[J]. IEEE Access, 2020, 8: 181662–181673. [12] 黄东华, 赵勇胜, 赵拥军, 储美娟等. 基于DOA-TDOA-FDOA的单站无源相干定位代数解[J]. 电子与信息学报, 2021, 43(03): 735–744.HUANG Donghua, ZHAO Yongsheng, ZHAO Yongjun, CHU Meijuanet al. An algebraic solution for single-observer passive coherent location using DOA-TDOA-FDOA measurements[J]. Journal of Electronics &Information Technology, 2021, 43(03): 735–744. [13] 雍龙泉. 非线性方程牛顿迭代法研究进展[J]. 数学的实践与认识, 2021, 51(15): 240–249.YONG Longquan. Advances in newton's iterative methods for nonlinear equationResearch progress of newton iterative method for nonlinear equations[J]. Mathematics in Practice and Theory, 2021, 51(15): 240–249. [14] Y WANG Yue and K C HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless CommunicationsIEEE Trans Wireless Commun, 2015, 14(12): 6524–6535. [15] Y SUN Yimao, K C HO K C, and Q WAN Qun. Eigenspace solution for AOA localization in modified polar representation[J]. IEEE Transactions on Signal ProcessingIEEE Trans Signal Process, 2020, 68: 2256–2271. [16] J ZOU Jifeng, Y SUN Yimao, and Q WAN Qun. A novel 3-D localization scheme using 1-D angle measurements[J]. IEEE Sensors Letters, 2020, 4(6): 1–4,7001904. [17] E ALAMDARI E, F BEHNIA F, and R AMIRI R. Conical localization from angle measurements: An approximate convex solution[J]. IEEE Sensors Letters, 2022, 6(5): 1–4,7001404.

##### 计量
• 文章访问数:  135
• HTML全文浏览量:  70
• PDF下载量:  37
• 被引次数: 0
##### 出版历程
• 收稿日期:  2022-06-15
• 修回日期:  2022-09-05
• 网络出版日期:  2022-09-07

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈