高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应分块的高光谱图像压缩感知重构方法

王洋 杨孟宇 赵首博

王洋, 杨孟宇, 赵首博. 基于自适应分块的高光谱图像压缩感知重构方法[J]. 电子与信息学报, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738
引用本文: 王洋, 杨孟宇, 赵首博. 基于自适应分块的高光谱图像压缩感知重构方法[J]. 电子与信息学报, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738
WANG Yang, YANG Mengyu, ZHAO Shoubo. Compressed Sensing Reconstruction of Hyperspectral Images Based on Adaptive Blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738
Citation: WANG Yang, YANG Mengyu, ZHAO Shoubo. Compressed Sensing Reconstruction of Hyperspectral Images Based on Adaptive Blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738

基于自适应分块的高光谱图像压缩感知重构方法

doi: 10.11999/JEIT220738
基金项目: 国家自然科学基金(61801148),黑龙江普通本科高等学校青年创新人才培养计划(UNPYSCT-2020187)
详细信息
    作者简介:

    王洋:男,教授,硕士生导师,研究方向为3维重建、立体视觉、3维仿真

    杨孟宇:女,硕士生,研究方向为压缩感知与数字信号处理

    赵首博:男,副教授,硕士生导师,研究方向为精密光电测量、计算视觉成像

    通讯作者:

    赵首博 shoubozh@126.com

  • 中图分类号: TN911.73; TP751

Compressed Sensing Reconstruction of Hyperspectral Images Based on Adaptive Blocking

Funds: The National Natural Science Foundation of China (61801148), The Young Innovative Talents Training Plan of Heilongjiang Ordinary Undergraduate Colleges and Universities (UNPYSCT-2020187)
  • 摘要: 在对高光谱图像采样重构的研究中,整体采样和固定分块采样没有考虑到高光谱图像复杂的纹理特征分布,使用了相同的测量矩阵导致图像的重构质量较差。针对此问题,该文提出基于2维图像熵自适应分块压缩感知重构方法(ABCS-IE),该方法以图像2维熵作为高光谱图像纹理细节的度量,根据图像的纹理细节分布自适应改变图像子块的大小,然后为不同的图像块分配特定的采样值,根据分配的采样值设计专有的测量矩阵对图像块进行压缩测量,将采样测量值代入重构算法中进行重构。实验结果表明,与整体采样重构和固定分块采样重构相比,将该方法应用到压缩感知重构算法中对高光谱图像进行采样重构后,重构的图像在视觉效果上有明显的提高,取得的峰值信噪比(PSNR)和结构相似度(SSIM)最大,采样率为0.4时,PSNR提高了2~4 dB,SSIM最大提高了0.27,均方根误差(RMSE)和信息熵差值(ΔH)也有所降低,说明重构的图像更加接近原始图像。而且运算时间也减少了1~1.5 s。可见,该方法能充分利用高光谱图像的纹理特征,有效提高图像的重构质量,同时减少重构的运算时间。
  • 图  1  基于2维图像熵自适应分块压缩感知采样算法

    图  2  3个测试图像的自适应分块结果

    图  3  自适应分块算法重构性能对比结果

    图  4  图像重构对比图

    表  1  不同测量矩阵下重构图像的PSNR结果对比(dB)

    目标图像算法
    测量矩阵
    高斯矩阵伯努利矩阵循环矩阵
    ulmCoSaMP31.889131.446830.6240
    BCS-CoSaMP33.486433.075132.5439
    ABCS-IE-CoSaMP35.685734.976033.4807
    BGUCoSaMP30.070929.689128.6254
    BCS-CoSaMP31.136830.864929.7950
    ABCS-IE-CoSaMP32.926832.100831.5431
    objectCoSaMP31.160530.543829.2670
    BCS-CoSaMP32.456931.790230.9657
    ABCS-IE-CoSaMP34.596733.996132.5935
    下载: 导出CSV

    表  2  重构图像的RMSE结果对比

    目标图像算法
    采样率
    0.10.20.30.40.50.60.7
    ulmCoSaMP0.24290.20520.18500.14610.12580.08520.0545
    BCS-CoSaMP0.23080.18510.14900.11070.10560.06530.0347
    ABCS-IE-CoSaMP0.21130.14870.10770.07150.06700.02930.0096
    BGUCoSaMP0.21490.19470.18440.15920.12140.06210.0187
    BCS-CoSaMP0.20730.17460.15540.13420.09260.04170.0168
    ABCS-IE-CoSaMP0.19670.14530.11940.09770.05940.01050.0073
    objectCoSaMP0.15740.14220.12210.09560.06310.02300.0031
    BCS-CoSaMP0.14280.12970.10200.07250.04470.01210.0026
    ABCS-IE-CoSaMP0.12710.10610.07630.04230.02070.00630.0017
    下载: 导出CSV

    表  3  重构图像的ΔH结果对比

    目标图像算法采样率
    0.10.20.30.40.50.60.7
    ulmCoSaMP3.28872.21571.58001.00370.68080.42470.2657
    BCS-CoSaMP2.88931.67281.35940.61210.43010.28670.2200
    ABCS-IE-CoSaMP1.96951.33020.52930.33930.32910.13380.0299
    BGUCoSaMP0.95190.83770.81820.62890.38320.18810.0601
    BCS-CoSaMP0.87860.73340.59480.47470.28280.13830.0077
    ABCS-IE-CoSaMP0.82730.52690.43700.35260.19720.07740.0045
    objectCoSaMP1.61181.47901.21300.81180.39880.12760.0401
    BCS-CoSaMP1.52311.24720.92480.48710.29170.04900.0249
    ABCS-IE-CoSaMP1.28590.97570.56530.45510.18380.04560.0099
    下载: 导出CSV

    表  4  不同重构算法的运行时间t对比(s)

    算法
    目标图像
    ulmBGUobject
    BP8.757.547.32
    BCS-BP8.527.037.25
    ABCS-IE-BP7.085.876.03
    CoSaMP6.355.835.80
    BCS-CoSaMP6.185.795.75
    ABCS-IE-CoSaMP4.674.344.36
    GPSR8.428.217.84
    BCS-GPSR8.368.177.76
    ABCS-IE-GPSR6.846.736.35
    下载: 导出CSV
  • [1] LIU Lei, SUN Min, REN Xiang, et al. Hyperspectral image quality based on convolutional network of multi-scale depth[J]. Journal of Visual Communication and Image Representation, 2020, 71: 102721. doi: 10.1016/j.jvcir.2019.102721
    [2] FABELO H, ORTEGA S, SZOLNA A, et al. In-vivo hyperspectral human brain image database for brain cancer detection[J]. IEEE Access, 2019, 7: 39098–39116. doi: 10.1109/ACCESS.2019.2904788
    [3] 王建成, 朱猛. 高光谱侦察技术的发展[J]. 航天电子对抗, 2019, 35(3): 37–45. doi: 10.16328/j.htdz8511.2019.03.009

    WANG Jiancheng and ZHU Meng. Development status of hyperspectral reconnaissance[J]. Aerospace Electronic Warfare, 2019, 35(3): 37–45. doi: 10.16328/j.htdz8511.2019.03.009
    [4] LU Bing, HE Yuhong, and DAO P D. Comparing the performance of multispectral and hyperspectral images for estimating vegetation properties[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1784–1797. doi: 10.1109/JSTARS.2019.2910558
    [5] 王立国, 王丽凤. 结合高光谱像素级信息和CNN的玉米种子品种识别模型[J]. 遥感学报, 2021, 25(11): 2234–2244.

    WANG Liguo and WANG Lifeng. Variety identification model for maize seeds using hyperspectral pixel-level information combined with convolutional neural network[J]. National Remote Sensing Bulletin, 2021, 25(11): 2234–2244.
    [6] 邓亚美, 王秀娟, 杨敏莉, 等. 成像技术在食品安全与质量控制中的研究进展[J]. 色谱, 2020, 38(7): 741–749. doi: 10.3724/SP.J.1123.202

    DENG Yamei, WANG Xiujuan, YANG Minli, et al. Research advances in imaging technology for food safety and quality control[J]. Chinese Journal of Chromatography, 2020, 38(7): 741–749. doi: 10.3724/SP.J.1123.202
    [7] HU Meiqi, WU Chen, ZHANG Liangpei, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750–3762. doi: 10.1109/JSTARS.2021.3066508
    [8] LUO Jiqiang, XU Tingfa, PAN Teng, et al. An efficient compression method of hyperspectral images based on compressed sensing and joint Optimization[J]. Integrated Ferroelectrics, 2020, 208(1): 194–205. doi: 10.1080/10584587.2020.1728625
    [9] SUN Zheng and YAN Xiangyang. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography[J]. Computers in Biology and Medicine, 2020, 116: 103587. doi: 10.1016/j.compbiomed.2019.103587
    [10] LI Denghui and WANG Yanhong. Implementation of image resampling algorithm based on compressed sensing[J]. Journal of Physics:Conference Series, 2021, 1732: 012071. doi: 10.1088/1742-6596/1732/1/012071
    [11] WANG Rongfang, QIN Yali, WANG Zhenbiao, et al. Group-based sparse representation for compressed sensing image reconstruction with joint regularization[J]. Electronics, 2022, 11(2): 182. doi: 10.3390/electronics11020182
    [12] 赵首博, 李秀红. 基于压缩感知的反射光谱重构算法研究[J]. 光谱学与光谱分析, 2021, 41(4): 1092–1096. doi: 10.3964/j.issn.1000-0593(2021)04-1092-05

    ZHAO Shoubo and LI Xiuhong. Research on reflection spectrum reconstruction algorithm based on compressed sensing[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1092–1096. doi: 10.3964/j.issn.1000-0593(2021)04-1092-05
    [13] WEI Ziran, ZHANG Jianlin, XU Zhiyong, et al. Optimization methods of compressively sensed image reconstruction based on single-pixel imaging[J]. Applied Sciences, 2020, 10(9): 3288.
    [14] TAO Chenning, ZHU Huanzheng, SUN Peng, et al. Simultaneous coded aperture and dictionary optimization in compressive spectral imaging via coherence minimization[J]. Optics Express, 2020, 28(18): 26587–26600. doi: 10.1364/OE.396260
    [15] ZHANG Hao, MA Xu, LAU D L, et al. Compressive spectral imaging based on hexagonal blue noise coded apertures[J]. IEEE Transactions on Computational Imaging, 2020, 6: 749–763. doi: 10.1109/TCI.2020.2979373
    [16] ZHAO Yushi, HE Wenjun, LIU Zhiying, et al. Optical design of an offner coded aperture snapshot spectral imaging system based on dual-DMDs in the mid-wave infrared band[J]. Optics Express, 2021, 29(24): 39271–39283. doi: 10.1364/OE.444460
    [17] WANG Zhongliang, HE Mi, YE Zhen, et al. Reconstruction of hyperspectral images from spectral compressed sensing based on a multitype mixing model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2304–2320. doi: 10.1109/JSTARS.2020.2994334
    [18] 谌德荣, 吕海波, 李秋富, 等. 分块压缩感知的全变差正则化重构算法[J]. 电子与信息学报, 2019, 41(9): 2217–2223. doi: 10.11999/JEIT180931

    CHEN Derong, LÜ Haibo, LI Qiufu, et al. Total variation regularized reconstruction algorithms for block compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2217–2223. doi: 10.11999/JEIT180931
    [19] DAI Guangzhi, HE Zhiyong, and SUN Hongwei. Ultrasonic block compressed sensing imaging reconstruction algorithm based on wavelet sparse representation[J]. Current Medical Imaging, 2020, 16(3): 262–272. doi: 10.2174/1573405615666191209151746
    [20] ZHANG Zheng, BI Hongbo, KONG Xiaoxue, et al. Adaptive compressed sensing of color images based on salient region detection[J]. Multimedia Tools and Applications, 2020, 79(21): 14777–14791. doi: 10.1007/s11042-018-7062-6
    [21] WANG Xiaodong, LI Yunhui, WANG Zhi, et al. Self-adaptive block-based compressed sensing imaging for remote sensing applications[J]. Journal of Applied Remote Sensing, 2020, 14(1): 016513. doi: 10.1117/1.JRS.14.016513
    [22] KAZEMI V, SHAHZADI A, and BIZAKIi H K. Multifocus image fusion using adaptive block compressive sensing by combining spatial frequency[J]. Multimedia Tools and Applications, 2022, 81(11): 15153–15170. doi: 10.1007/s11042-022-12072-2
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  523
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2023-01-14
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回