高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv5的煤矿井下目标检测研究

寇发荣 肖伟 何海洋 陈若晨

寇发荣, 肖伟, 何海洋, 陈若晨. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报, 2023, 45(7): 2642-2649. doi: 10.11999/JEIT220725
引用本文: 寇发荣, 肖伟, 何海洋, 陈若晨. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报, 2023, 45(7): 2642-2649. doi: 10.11999/JEIT220725
KOU Farong, XIAO Wei, HE Haiyang, CHEN Ruochen. Research on Target Detection in Underground Coal Mines Based on Improved YOLOv5[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2642-2649. doi: 10.11999/JEIT220725
Citation: KOU Farong, XIAO Wei, HE Haiyang, CHEN Ruochen. Research on Target Detection in Underground Coal Mines Based on Improved YOLOv5[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2642-2649. doi: 10.11999/JEIT220725

基于改进YOLOv5的煤矿井下目标检测研究

doi: 10.11999/JEIT220725
基金项目: 国家自然科学基金(51775426),陕西省科技计划(2019JQ-795)
详细信息
    作者简介:

    寇发荣:男,教授,博士,研究方向为车辆系统动力学、智能汽车技术

    肖伟:男,硕士生,研究方向为智能车辆环境感知技术

    何海洋:男,硕士生,研究方向为智能车辆路径规划算法

    陈若晨:男,硕士生,研究方向为智能汽车技术

    通讯作者:

    寇发荣 koufarong@xust.edu.cn

  • 中图分类号: TN911.73; TP391

Research on Target Detection in Underground Coal Mines Based on Improved YOLOv5

Funds: The National Natural Science Foundation of China (51775426), Shaanxi Province Science and Technology Program Project (2019JQ-795)
  • 摘要: 针对煤矿井下环境多利用红外相机感知周边环境温度成像,但形成的图像存在纹理信息少、噪声多、图像模糊等问题,该文提出一种可用于煤矿井下实时检测的多尺度卷积神经网络(Ucm-YOLOv5)。该网络是在YOLOv5的基础上进行改进,首先使用PP-LCNet作为主干网络,用于加强CPU端的推理速度;其次取消Focus模块,使用shuffle_block模块替代C3模块,在去除冗余操作的同时减少了计算量;最后优化Anchor同时引入H-swish作为激活函数。实验结果表明,Ucm-YOLOv5比YOLOv5的模型参数量减少了41%,模型缩小了86%,该算法在煤矿井下具有更高的检测精度,同时在CPU端的检测速度达到实时检测标准,满足煤矿井下目标检测的工作要求。
  • 图  1  Ucm-YOLOv5神经网络结构图

    图  2  图片扩充结果

    图  3  Ucm-YOLOv5网络的损失函数和查准率

    图  4  YOLOv5和Ucm-YOLOv5神经网络的PR曲线

    图  5  不同模型检测效果

    图  6  复杂环境下Ucm-YOLOv5网络和YOLOv5网络检测性能的对比

    表  1  Anchor参数

    原始Anchor重构Anchor
    [10,13, 16,30, 55,220]
    [30,61, 62,45, 59,119]
    [116,90,156,198,373,326]
    [30,27, 53,78, 172,35]
    [128,115,90,225, 101,327]
    [222,152,154,316,311,243]
    下载: 导出CSV

    表  2  煤矿井下数据集参数

    类别扩充前标签数扩充后标签数
    Person365821948
    Rail轨道8124872
    Tip cards提示牌3892334
    Truck3522112
    Machine机器4792874
    Pipe管道9135478
    Lamp15019006
    Columns支撑柱5853510
    总计868952134
    下载: 导出CSV

    表  3  网络检测结果对比(%)

    曝光状态APmAP
    人类轨道提示牌机器管道支撑柱
    强曝光YOLOv589.688.289.584.585.289.489.383.588.2
    Ucm-YOLOv599.399.698.799.499.599.698.296.198.8
    弱曝光YOLOv593.784.385.682.982.787.281.679.583.4
    Ucm-YOLOv598.896.697.395.794.596.694.996.196.3
    下载: 导出CSV

    表  4  煤矿井下数据集不同方法结果比较

    模型LossmAP(%)
    Faster R-CNN0.041980.6
    MobileNet V30.011986.2
    YOLOv50.020685.8
    Ucm-YOLOv50.017197.5
    下载: 导出CSV

    表  5  不同模型网络性能对比结果

    模型模型大小
    (MByte)
    模型参数量
    (MByte)
    平均检测速度(帧/s)
    GPUCPU
    Faster R-CNN17025.37.02.4
    MobileNet V3485.43725
    YOLOv590.47.3857.6
    Ucm-YOLOv512.54.35128
    下载: 导出CSV

    表  6  煤矿井下复杂环境中Ucm-YOLOv5网络与YOLOv5的鲁棒性对比

    类别目标出现
    总帧数
    目标检测总帧数目标错误检测总帧数平均精确率AP(%)误检率(%)平均检测率mAP(%)平均检测速度(帧/s)
    Ucm-
    YOLOv5
    YOLOv5Ucm-
    YOLOv5
    YOLOv5Ucm-
    YOLOv5
    YOLOv5Ucm-
    YOLOv5
    YOLOv5Ucm-
    YOLOv5
    YOLOv5Ucm-
    YOLOv5
    YOLOv5
    Person198610638850053.544.60045.840.821.116.3
    Rail651329277263350.542.545
    Tip cards566265236131846.841.72.33.2
    Truck496213178162342.938.83.24.6
    Machine566263216222946.438.23.95.1
    Pipe6482982690045.941.500
    Lamp8424153870042.345.900
    Columns594227198182538.233.334.2
    下载: 导出CSV
  • [1] LI Ailing, ZHANG Jixiong, ZHOU Nan, et al. A model for evaluating the production system of an intelligent mine based on unascertained measurement theory[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 1865–1875. doi: 10.3233/JIFS-190329
    [2] ZHANG Kexue, KANG Lei, CHEN Xuexi, et al. A review of intelligent unmanned mining current situation and development trend[J]. Energies, 2022, 15(2): 513. doi: 10.3390/en15020513
    [3] HE Yunze, DENG Baoyuan, WANG Hongjin, et al. Infrared machine vision and infrared thermography with deep learning: A review[J]. Infrared Physics & Technology, 2021, 116: 103754. doi: 10.1016/j.infrared.2021.103754
    [4] WEI Dong, WANG Zhongbin, SI Lei, et al. Online shearer-onboard personnel detection method for the intelligent fully mechanized mining face[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2022, 236(6): 3058–3072. doi: 10.1177/09544062211030973
    [5] RYU J and KIM S. Data driven proposal and deep learning-based small infrared drone detection[J]. Journal of Institute of Control, Robotics and Systems, 2018, 24(12): 1146–1151. doi: 10.5302/J.ICROS.2018.18.0157
    [6] FAN Tao. Research and realization of video target detection system based on deep learning[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2020, 18(1): 1941010. doi: 10.1142/S0219691319410108
    [7] 李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372–3378. doi: 10.11999/JEIT210761

    LI Baoqi, HUANG Haining, LIU Jiyuan, et al. Underwater optical image interested object detection model based on improved SSD[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3372–3378. doi: 10.11999/JEIT210761
    [8] LI Xiaoyu, WANG Shuai, LIU Bin, et al. Improved YOLOv4 network using infrared images for personnel detection in coal mines[J]. Journal of Electronic Imaging, 2022, 31(1): 013017. doi: 10.1117/1.JEI.31.1.013017
    [9] JIANG Daihong, DAI Lei, LI Dan, et al. Moving-object tracking algorithm based on PCA-SIFT and optimization for underground coal mines[J]. IEEE Access, 2019, 7: 35556–35563. doi: 10.1109/ACCESS.2019.2899362
    [10] DU Yuxin, TONG Minming, ZHOU Lingling, et al. Edge detection based on Retinex theory and wavelet multiscale product for mine images[J]. Applied Optics, 2016, 55(34): 9625–9637. doi: 10.1364/AO.55.009625
    [11] QIU Zhi, ZHAO Zuoxi, CHEN Shaoji, et al. Application of an improved YOLOv5 algorithm in real-time detection of foreign objects by ground penetrating radar[J]. Remote Sensing, 2022, 14(8): 1895. doi: 10.3390/RS14081895
    [12] CUI Cheng, GAO Tingquan, WEI Shengyu, et al. PP-LCNet: A lightweight CPU convolutional neural network[J]. arXiv preprint arXiv: 2109.15099, 2021.
    [13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [14] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [15] BOCHKOVSKIY A, WANG C C Y, and LIAO H Y M. YoLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
    [16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [17] REDMON J and FARHADI A. YoLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
    [18] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263–7271.
    [19] TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019.
    [20] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  1164
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 修回日期:  2022-11-14
  • 网络出版日期:  2022-11-19
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回