高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种抑制残余硬件损伤影响的毫米波大规模MIMO混合预编码方案

梁彦 项彩霞 李飞

梁彦, 项彩霞, 李飞. 一种抑制残余硬件损伤影响的毫米波大规模MIMO混合预编码方案[J]. 电子与信息学报, 2023, 45(7): 2451-2458. doi: 10.11999/JEIT220724
引用本文: 梁彦, 项彩霞, 李飞. 一种抑制残余硬件损伤影响的毫米波大规模MIMO混合预编码方案[J]. 电子与信息学报, 2023, 45(7): 2451-2458. doi: 10.11999/JEIT220724
LIANG Yan, XIANG Caixia, LI Fei. A Hybrid Precoding Scheme for Millimeter Wave Massive MIMO System with Residual Hardware Impairments[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2451-2458. doi: 10.11999/JEIT220724
Citation: LIANG Yan, XIANG Caixia, LI Fei. A Hybrid Precoding Scheme for Millimeter Wave Massive MIMO System with Residual Hardware Impairments[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2451-2458. doi: 10.11999/JEIT220724

一种抑制残余硬件损伤影响的毫米波大规模MIMO混合预编码方案

doi: 10.11999/JEIT220724
基金项目: 国家自然科学基金(61871238)
详细信息
    作者简介:

    梁彦:女,副教授,研究方向为无线通信中的信号处理

    项彩霞:女,硕士,研究方向为抑制射频失真影响的毫米波大规模MIMO系统混合预编码

    李飞:女,教授,研究方向为无线通信与量子智能信号处理

    通讯作者:

    梁彦 liangyan@njupt.edu.cn

  • 中图分类号: TN929.5

A Hybrid Precoding Scheme for Millimeter Wave Massive MIMO System with Residual Hardware Impairments

Funds: The National Natural Science Foundation of China (61871238)
  • 摘要: 在假设通信收发机具有理想硬件特性的前提下,毫米波大规模多输入多输出(MIMO)系统的混合预编码问题已经获得了广泛的研究。然而,由通信收发机硬件非理想特性导致的残余硬件损伤在毫米波大规模MIMO系统中难以避免,并且会严重影响混合预编码的性能。针对这一问题,该文建立了在收发机残余硬件损伤影响下的毫米波大规模MIMO混合预编码模型,提出一种基于流形优化的混合预编码方案。首先根据收发信号之间的修正均方误差建立优化目标,进而推导出数字预编码矩阵与数字组合矩阵的闭合表达式,然后基于黎曼流形处理恒模约束问题获得模拟预编码矩阵与模拟组合矩阵,最后进行收发机交替迭代获得混合预编码的优化结果。仿真结果表明,该方案有效抑制了残余硬件损伤对毫米波大规模MIMO系统的不利影响,显著提升了系统的性能。
  • 图  1  单用户毫米波大规模MIMO系统

    图  2  不同残余硬件损伤程度下的频谱效率比较

    图  3  不同预编码方案频谱效率比较

    图  4  不同预编码方案误码率比较

    图  5  不同射频链数目下各预编码方案频谱效率比较

    图  6  算法收敛性能

    算法1 基于流形优化的抑制残余硬件损伤影响的混合预编码算法
     输 入:信道矩阵$ H $,噪声功率$ {\sigma ^2} $,残余硬件损伤程度$ \delta _{\text{T}}^2 $和$ \delta _{\text{R}}^2 $,
     混合组合矩阵${ {\boldsymbol{W} }_{{\rm{RF}}} }{ {\boldsymbol{W} }_{{\rm{BB}}} }$
     1 初始化${ {\boldsymbol{F} }_{{\rm{RF}},0} }$,确定初始搜索方向:${d_0} = - {\rm{grad} }\;f\left( { { {\boldsymbol{F} }_{{\rm{RF}},0} } } \right)$,
     $ k = 0 $
     2 开始迭代
     3   根据式(23)计算黎曼梯度:${g_k} = {\rm{grad} }\;f\left( { { {\boldsymbol{F} }_{{\rm{RF}},} }_k} \right)$
     4   计算切向量:$d_k^ + = {d_k} - \Re \left\{ { {d_k} \circ { {\boldsymbol{F} }_{{\rm{RF}},} }_k^*} \right\} \circ { {\boldsymbol{F} }_{{\rm{RF,}}} }_k$
     5   利用Polak-Ribiere共轭梯度法确定因子$ {\gamma _k} $
     6   更新迭代方向:$ {d_k} = - {g_k} + {\gamma _k}d_k^ + $
     7   采用Armijo回溯线搜索确定搜索步长$ {\alpha _k} $
     8   回缩更新${F_{{\rm{RF}}} }$:${ {\boldsymbol{F} }_{{\rm{RF}},} }_k = {\rm{vec}}\left[ {\frac{ { { {\boldsymbol{F} }_{{\rm{RF,}}} }_k + {\alpha _k}{d_k} } }{ {\left| { { {\boldsymbol{F} }_{{\rm{RF}},} }_k + {\alpha _k}{d_k} } \right|} } } \right]$
     9   $ k \leftarrow k + 1 $
     10 重复步骤3~9直到满足条件停止迭代
     11 根据式(17)得到${ {\boldsymbol{F} }_{\rm{U}}}$
     12 根据式(18)得到$ \beta $和数字预编码矩阵${ {\boldsymbol{F} }_{{\rm{BB}}} } = \beta { {\boldsymbol{F} }_{\rm{U}}}$
     输 出:${ {\boldsymbol{F} }_{{\rm{RF}}} },{ {\boldsymbol{F} }_{{\rm{BB}}} }$
    下载: 导出CSV

    表  1  仿真参数

    参数
    毫米波频率(GHz)
    发射功率(W)
    发射/接收天线数
    射频链数/数据流数
    信道散射簇数目
    每个簇的路径数
    60
    1
    128/12
    4
    5
    10
    下载: 导出CSV
  • [1] CHATAUT R and AKL R. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction[J]. Sensors, 2020, 20(10): 2753. doi: 10.3390/s20102753
    [2] KEBEDE T, WONDIE Y, STEINBRUNN J, et al. Precoding and beamforming techniques in mmWave-massive MIMO: Performance assessment[J]. IEEE Access, 2022, 10: 16365–16387. doi: 10.1109/access.2022.3149301
    [3] DILLI R. Performance analysis of multi user massive MIMO hybrid beamforming systems at millimeter wave frequency bands[J]. Wireless Networks, 2021, 27(3): 1925–1939. doi: 10.1007/s11276-021-02546-w
    [4] HEGDE G, MASOUROS C, and PESAVENTO M. Interference exploitation-based hybrid precoding with robustness against phase errors[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3683–3696. doi: 10.1109/twc.2019.2917064
    [5] LIN Tian, CONG Jiaqi, ZHU Yu, et al. Hybrid beamforming for millimeter wave systems using the MMSE criterion[J]. IEEE Transactions on Communications, 2019, 67(5): 3693–3708. doi: 10.1109/tcomm.2019.2893632
    [6] AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/twc.2014.011714.130846
    [7] SOHRABI F and YU Wei. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1432–1443. doi: 10.1109/jsac.2017.2698958
    [8] HAO Wanming, SUN Gangcan, ZENG Ming, et al. Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(16): 13052–13064. doi: 10.1109/jiot.2021.3064069
    [9] XING Zhe, WANG Rui, WU Jun, et al. Achievable rate analysis and phase shift optimization on intelligent reflecting surface with hardware impairments[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5514–5530. doi: 10.1109/twc.2021.3068225
    [10] ZAREI S, GERSTACKER W H, AULIN J, et al. Multi-cell massive MIMO systems with hardware impairments: Uplink-downlink duality and downlink precoding[J]. IEEE Transactions on Wireless Communications, 2017, 16(8): 5115–5130. doi: 10.1109/twc.2017.2705709
    [11] PAPAZAFEIROPOULOS A K, PAPAGEORGIOU G K, KOLAWOLE O Y, et al. Towards the assessment of realistic hybrid precoding in millimeter wave MIMO systems with hardware impairments[J]. IET Communications, 2021, 15(12): 1606–1619. doi: 10.1049/cmu2.12173
    [12] PAPAZAFEIROPOULOS A, BJÖRNSON E, KOURTESSIS P, et al. Scalable cell-free massive MIMO systems: Impact of hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9701–9715. doi: 10.1109/tvt.2021.3109341
    [13] ORTEGA A J. OMP-based hybrid precoding and SVD-based hybrid combiner design with partial CSI for massive MU-MIMO mmWave system[C]. 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, United Arab Emirates, 2021: 1–5.
    [14] PALOMAR D P, CIOFFI J M, and LAGUNAS M A. Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[J]. IEEE Transactions on Signal Processing, 2003, 51(9): 2381–2401. doi: 10.1109/tsp.2003.815393
    [15] JOHAM M, UTSCHICK W, and NOSSEK J A. Linear transmit processing in MIMO communications systems[J]. IEEE Transactions on signal Processing, 2005, 53(8): 2700–2712. doi: 10.1109/tsp.2005.850331
    [16] LEE J M. Introduction to Smooth Manifolds[M]. 2nd ed. New York: Springer, 2012.
    [17] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/jstsp.2016.2523903
    [18] HJORUNGNES A and PALOMAR D P. Patterned complex-valued matrix derivatives[C]. 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt, Germany, 2008: 293–297.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  231
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-10-14
  • 录用日期:  2023-02-06
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回