高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集群协作的云雾混合计算资源分配和负载均衡策略

杨守义 成昊泽 党亚萍

杨守义, 成昊泽, 党亚萍. 基于集群协作的云雾混合计算资源分配和负载均衡策略[J]. 电子与信息学报, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719
引用本文: 杨守义, 成昊泽, 党亚萍. 基于集群协作的云雾混合计算资源分配和负载均衡策略[J]. 电子与信息学报, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719
YANG Shouyi, CHENG Haoze, DANG Yaping. Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719
Citation: YANG Shouyi, CHENG Haoze, DANG Yaping. Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719

基于集群协作的云雾混合计算资源分配和负载均衡策略

doi: 10.11999/JEIT220719
基金项目: 国家重点研发计划跨政府合作专项(2016YFE0118400),河南省自然科学基金(202300410482),郑州市重大科技创新专项(2019CXZX0037)
详细信息
    作者简介:

    杨守义:男,教授,研究方向为MIMO通信、毫米波通信、移动计算等

    成昊泽:男,硕士生,研究方向为边缘计算、雾计算、无线通信等

    党亚萍:女,硕士生,研究方向为移动边缘计算、无线通信等

    通讯作者:

    杨守义 iesyyang@zzu.edu.cn

  • 中图分类号: TN929.5

Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration

Funds: The National Key R&D Program Intergovernmental Cooperation Special Project (2016YFE0118400), The Natural Science Foundation of Henan Province (202300410482), Zhengzhou Major Science and Technology Innovation Special (2019CXZX0037)
  • 摘要: 针对物联网(IoT)中智能应用快速增长导致的移动网络数据拥塞问题,该文构建了一种基于雾集群协作的云雾混合计算模型,在考虑集群负载均衡的同时引入权重因子以平衡计算时延和能耗,最终实现系统时延能耗加权和最小。为了解决该混合整数非线性规划问题,将原问题分解后采用库恩塔克(KKT)条件和二分搜索迭代法对资源配置进行优化,提出一种基于分支定界的开销最小化卸载算法(BB-OMOA)获得最优卸载决策。仿真结果表明,集群协作模式显著提高了系统负载均衡度,且所提策略在不同参数条件下明显优于其他基准方案。
  • 图  1  基于集群协作的云雾混合计算模型

    图  2  用户任务量与SLEC的关系

    图  3  任务量与用户分布的关系

    图  4  系统负载与SLEC的关系

    图  5  权重因子与SLEC的关系

    图  6  不同模式下系统负载的分布

    算法1 基于二分搜索迭代法的传输功率分配算法
     初始化:传输功率范围0、$p_u^{\max }$,收敛阈值$\gamma $
     (1) 根据式(23)计算$s(p_u^{\max })$
     (2) if $\,s(p_u^{\max }) \le 0\,$ then
     (3)  $p{_u^{t^*} } = p_u^{\max }$
     (4) else
     (5)  初始化参数$p_u^{\text{v}} = 0,p_u^{\text{r}} = p_u^{\max }$
     (6)   $p_u^{\text{l}} = {{(p_u^{\text{v}} + p_u^{\text{r}})} \mathord{\left/ {\vphantom {{(p_u^{\text{v}} + p_u^{\text{r}})} 2}} \right. } 2}$
     (7)   if $\,s(p_u^{\text{l}}) \le 0$ then
     (8)    $p_u^{\text{v}} = p_u^{\text{l}}$
     (9)   else
     (10)    $p_u^{\text{r}} = p_u^{\text{l}}$
     (11)   end if
     (12) until $\,(p_u^{\text{r} } - p_u^{\text{v} }) \le \gamma \,$
     (13)   $p_u^{\max } = {{(p_u^{\text{r}} + p_u^{\text{v}})} \mathord{\left/ {\vphantom {{(p_u^{\text{r}} + p_u^{\text{v}})} 2}} \right. } 2}$
    下载: 导出CSV
    算法2 BB-OMOA
     初始化:用户任务及系统参量,最优计算频率$f{_u^{n,{\text{e} }^*} }$,最优功率
     $p_u^{t^*}$,用户集合$U$,雾集群组$N$,求解精确度${\text{η }}$
     (1) for $u = 1,2, \cdots ,U$ do
     (2)  求解松弛问题$\widetilde { {\text{OPT} } } {\text{-}} 5$,得$ {\mathbf{b}} $和${\tilde L_{{\text{lower}}}}$
     (3)  if ${b_{u,s}} \in Z,\forall u \in U$then
     (4)   现行解${{\mathbf{b}}^ * }$即为最优解
     (5)  else
     (6)   挑选不符合整数条件的变量${b_j}$构造约束${b_j} \le \left\lfloor {{v_j}} \right\rfloor $和
         ${b_j} \ge \left\lfloor {{v_j}} \right\rfloor + 1$进行分支形成子问题
     (7) 设定待更新上下界${\tilde L_{{\text{lower}}}}$和${\tilde L_{{\text{upper}}}}$
     (8) while ${\tilde L_{{\text{upper}}}} - {\tilde L_{{\text{lower}}}} > {\text{η }}$ do
     (9)  if 子问题${\widetilde { {\text{OPT} } }_i} {\text{-}} 5$有可行解
     (10)   if ${\tilde L_i} \ge {\tilde L_{{\text{lower}}}}$且${\tilde L_i} \le {\tilde L_{{\text{upper}}}}$
     (11)    令${\tilde L_i}$为新的下界,即${\tilde L_{{\text{lower}}}} = {\tilde L_i}$
     (12)    回到步骤(6)迭代分支定界操作
     (13)   else if ${\tilde L_i}$对应解的各分量都是整数then
     (14)    return ${\tilde L_{{\text{lower}}}}$
     (15)   else 进行剪支操作舍弃这一子问题
     (16)   end if
     (17)  else 进行剪支操作舍弃这一子问题
     (18) 令${\tilde L_i}^ * = \min \{ {\tilde L_{{\text{lower}}}}|i \in {N_ + }\} $
     (19) $\tilde L_i^ * $为式(26)最优值${L^ * }$,对应解即最优策略${{\mathbf{b}}^ * }$。
    下载: 导出CSV

    表  1  仿真参数

    参数数值
    系统带宽$ B\left(\mathrm{M}\mathrm{H}\mathrm{z}\right) $20
    任务数据量$ L\left(\mathrm{M}\mathrm{b}\mathrm{i}\mathrm{t}\right) $0.1~0.5
    任务所需CPU周期数$ C\left(\mathrm{M}\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\right) $500~2500
    本地计算能力${f}_{u}^{\rm{{l}}}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$0.5~1.5
    噪声功率谱密度$ {N}_{0}(\mathrm{d}\mathrm{B}\mathrm{m}/\mathrm{H}\mathrm{z}) $–174
    最大传输功率$ {p}_{u}^{\mathrm{m}\mathrm{a}\mathrm{x}}\left(\mathrm{d}\mathrm{B}\mathrm{m}\right) $25
    雾集群最大计算能力$ {F}_{n}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right) $15~25
    中心云总计算能力${f}_{{\rm{d}}}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$50
    下载: 导出CSV
  • [1] LYU X C, TIAN Hui, SENGUL C, et al. Multiuser joint task offloading and resource optimization in proximate clouds[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3435–3447. doi: 10.1109/TVT.2016.2593486
    [2] HAO Wanming, ZENG Ming, SUN Gangcan, et al. Edge cache-assisted secure low-latency millimeter-wave transmission[J]. IEEE Internet of Things Journal, 2020, 7(3): 1815–1825. doi: 10.1109/JIOT.2019.2957351
    [3] ZHANG Tiankui, WANG Yi, LIU Yuanwei, et al. Cache-enabling UAV communications: Network deployment and resource allocation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7470–7483. doi: 10.1109/TWC.2020.3011881
    [4] ZHANG Weizhe, ELGENDY I A, HAMMAD M, et al. Secure and optimized load balancing for multitier IoT and edge-cloud computing systems[J]. IEEE Internet of Things Journal, 2021, 8(10): 8119–8132. doi: 10.1109/JIOT.2020.3042433
    [5] GOUDARZI M, WU Huaming, PALANISWAMI M, et al. An application placement technique for concurrent IoT applications in edge and fog computing environments[J]. IEEE Transactions on Mobile Computing, 2021, 20(4): 1298–1311. doi: 10.1109/TMC.2020.2967041
    [6] LIU Zening, YANG Yang, CHEN Yu, et al. A multi-tier cost model for effective user scheduling in fog computing networks[C]. 2019 IEEE Conference on Computer Communications Workshops, Paris, France, 2019: 1–6.
    [7] REHMAN A U, AHMAD Z, JEHANGIRI A I, et al. Dynamic energy efficient resource allocation strategy for load balancing in fog environment[J]. IEEE Access, 2020, 8: 199829–199839. doi: 10.1109/ACCESS.2020.3035181
    [8] ZENG Deze, GU Lin, GUO Song, et al. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system[J]. IEEE Transactions on Computers, 2016, 65(12): 3702–3712. doi: 10.1109/TC.2016.2536019
    [9] PHAM X Q and HUH E N. Towards task scheduling in a cloud-fog computing system[C]. 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa, Japan, 2016: 1–4.
    [10] DO C T, TRAN N H, PHAM C, et al. A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing[C]. 2015 International Conference on Information Networking (ICOIN), Siem Reap, Cambodia, 2015: 324–329.
    [11] XU Xiaolong, FU Shucun, CAI Qing, et al. Dynamic resource allocation for load balancing in fog environment[J]. Wireless Communications and Mobile Computing, 2018, 2018: 6421607. doi: 10.1155/2018/6421607
    [12] GAO Zihan, HAO Wanming, and YANG Shouyi. Joint offloading and resource allocation for multi-user multi-edge collaborative computing system[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3383–3388. doi: 10.1109/TVT.2021.3139843
    [13] SUN Yuxuan, GUO Xueying, SONG Jinhui, et al. Adaptive learning-based task offloading for vehicular edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3061–3074. doi: 10.1109/TVT.2019.2895593
    [14] GAO Zihan, HAO Wanming, ZHANG Ruizhe, et al. Markov decision process-based computation offloading algorithm and resource allocation in time constraint for mobile cloud computing[J]. IET Communications, 2020, 14(13): 2068–2078. doi: 10.1049/iet-com.2020.0062
    [15] TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
    [16] DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint MU-MIMO precoding and resource allocation for mobile-edge computing[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1639–1654. doi: 10.1109/TWC.2020.3035153
    [17] HAO Yixue, CHEN Min, HU Long, et al. Energy efficient task caching and offloading for mobile edge computing[J]. IEEE Access, 2018, 6: 11365–11373. doi: 10.1109/ACCESS.2018.2805798
    [18] ZHANG Ni, GUO Songtao, DONG Yifan, et al. Joint task offloading and data caching in mobile edge computing[C]. 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 2019: 234–239.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  211
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-10-14
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回