高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有正则化约束的脉冲神经网络机器人触觉物体识别方法

杨静 吉晓阳 李少波 胡建军 王阳 刘庭卿

杨静, 吉晓阳, 李少波, 胡建军, 王阳, 刘庭卿. 具有正则化约束的脉冲神经网络机器人触觉物体识别方法[J]. 电子与信息学报, 2023, 45(7): 2595-2604. doi: 10.11999/JEIT220711
引用本文: 杨静, 吉晓阳, 李少波, 胡建军, 王阳, 刘庭卿. 具有正则化约束的脉冲神经网络机器人触觉物体识别方法[J]. 电子与信息学报, 2023, 45(7): 2595-2604. doi: 10.11999/JEIT220711
YANG Jing, JI Xiaoyang, LI Shaobo, HU Jianjun, WANG Yang, LIU Tingqing. Spiking Neural Network Robot Tactile Object Recognition Method with Regularization Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2595-2604. doi: 10.11999/JEIT220711
Citation: YANG Jing, JI Xiaoyang, LI Shaobo, HU Jianjun, WANG Yang, LIU Tingqing. Spiking Neural Network Robot Tactile Object Recognition Method with Regularization Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2595-2604. doi: 10.11999/JEIT220711

具有正则化约束的脉冲神经网络机器人触觉物体识别方法

doi: 10.11999/JEIT220711
基金项目: 国家重点研发计划(2018AAA0101800),国家自然科学基金(62166005),教育部重点实验室开放项目(黔教合KY字[2020]245),贵州省高层次留学人才项目((2021)09号),贵州省自然科学基金项目(黔科合基础-ZK[2022]一般130,黔科合支撑[2021]335)
详细信息
    作者简介:

    杨静:男,副教授,研究方向为触觉感知

    吉晓阳:男,硕士生,研究方向为触觉感知

    李少波:男,教授,研究方向为制造大数据

    胡建军:男,教授,研究方向为智能分析

    王阳:男,博士后,研究方向为人工智能基础理论

    刘庭卿:男,硕士生,研究方向为触觉感知

    通讯作者:

    吉晓阳 gs.xyji20@gzu.edu.cn

  • 中图分类号: TP183

Spiking Neural Network Robot Tactile Object Recognition Method with Regularization Constraints

Funds: The National Key R&D Program of China(2018AAA0101800), The National Natural Science Foundation of China (62166005), The Joint Open Fund Project of Key Laboratories of the Ministry of Education ([2020]245), The Guizhou University Talents Project (GRJH[2020]09), The Natural Science Foudation of Guizhou Province (QKH-ZK[2022]130, QKH[2021]335)
  • 摘要: 拓展触觉感知能力是智能机器人未来发展的重要方向之一,决定着机器人的应用场景范围。由触觉传感器采集的数据是机器人完成触觉感知任务基础,但触觉数据具有复杂的时空性。脉冲神经网络具有丰富的时空动力学特征和契合硬件的事件驱动性,能更好地处理时空信息和应用于人工智能芯片给机器人带来更高能效。该文针对脉冲神经网络神经元脉冲活动离散性导致网络训练过程反向传播失效的问题,从智能触觉机器人动态系统角度,引入脉冲活动近似函数使脉冲神经网络反向传播梯度下降法有效;针对触觉脉冲数据量少导致的过拟合问题,融合正则化方法加以缓解;最后,提出具有正则化约束的脉冲神经网络机器人触觉物体识别(Spiking neural network Tactile dropout, SnnTd; Spiking neural network Tactile dropout-l2-cosine annealing, SnnTdlc)算法。相较于经典方法TactileSGNet, Grid-based CNN, MLP和GCN, SnnTd正则化方法触觉物体识别率在EvTouch-Containers数据集上比最好方法TactileSGNet提升了5.00%,SnnTdlc正则化方法触觉物体识别率在EvTouch-Objects数据集上比最好方法TactileSGNet提升了3.16%。
  • 图  1  网络模型结构图

    图  2  LIF神经元脉冲活动

    图  3  脉冲神经网络的空域和时域传播过程

    图  4  LIF神经元中的Dropout

    图  5  EvTouch-Containers数据集Loss值变化情况

    图  6  Acc, TrainingLoss 和 TestLoss 10 次实验统计结果

    图  7  EvTouch-Objects 数据集 Loss 值变化情况

    图  8  Acc, TrainingLoss 和 TestLoss 10 次实验结果

    图  9  正则化模型在不同数据集上的混淆矩阵

    算法1 具有L2正则化约束的脉冲神经网络机器人
    触觉物体识别算法
     相关参数:学习率${\mu _t}$, 网络参数$w$和$b$,时间步长$T$,触觉脉冲数
          据$S = \left\{ {{S_1},{S_2},\cdots,{S_T}} \right\}$,目标输出
          $R = \left\{ {{R_1},{R_2},\cdots,{R_T}} \right\}$,权重衰减参数$\sigma $,损失函数
          $L = L(R,S) + \dfrac{\sigma }{2}{\left\| w \right\|^2}$
       初始化:$w$,$b$,空列表$K = \{ \} $
       for ${\rm{Epoch}} = 1,2, \cdots ,N$:
        for $t = 1,2, \cdots ,T$:
        (1) 输入${S_t}$到脉冲神经网络,获得输出脉冲${K_t}$,将${K_t}$添
          加到$K$;
        end
        (2) 计算损失$L = L(R,S) + \dfrac{\sigma }{2}{\left\| w \right\|^2}$;
        (3) 计算 $\dfrac{{\partial \left(L + \dfrac{\sigma }{2}{{\left\| w \right\|}^2}\right)}}{{\partial w}} = \displaystyle\sum\nolimits_{t = 1}^T {\dfrac{{\partial L}}{{\partial P_t^n}}E_t^{n - 1}} + \sigma w$,
          $\dfrac{{\partial (L + \dfrac{\sigma }{2}{{\left\| w \right\|}^2})}}{{\partial b}} = \displaystyle\sum\nolimits_{t = 1}^T {\dfrac{{\partial L}}{{\partial P_t^n}}} $;
        (4) 根据Adam优化算法进行更新;
        (5) 通过余弦退火算法更新学习率${\mu _t}$;
        (6) 更新参数$w$,$b$;
     end
    下载: 导出CSV

    表  1  超参数设置表

    参数参数
    Epochs100宽度系数$a$0.5
    初始学习率${\rm{lr}}$1×10–3dropout10.2
    学习率衰减因子$\alpha $0.1dropout20.5
    学习率衰减代数${\rm{lrEpochs}}$40动量${\beta _1}$0.9
    余弦退火最小学习率${{\rm{lr}}_{ {\text{min} } } }$5×10–6均方根传播${\beta _2}$0.999
    膜电位阈值${P_{{\text{TH}}}}$0.5权重衰减$\sigma $0.01
    下载: 导出CSV

    表  2  EvTouch-Containers数据集实验结果

    模型 方法 Acc(%) TrainingLoss TestLoss
    Dropout L2 Cosine Annealing
    SnnT 66.00±0.86 2.13±0.04 1.03±0.01
    SnnTd 69.17±1.18 2.61±0.01 1.04±0.01
    SnnTl 68.33±1.11 2.13±0.02 1.02±0.01
    SnnTc 67.17±1.58 1.96±0.01 1.03±0.01
    SnnTdl 66.33±1.32 2.67±0.01 1.04±0.01
    SnnTdc 66.17±0.81 2.45±0.01 1.03±0.01
    SnnTlc 67.17±1.37 2.01±0.01 1.02±0.01
    SnnTdlc 67.33±0.86 2.51±0.01 1.04±0.01
    下载: 导出CSV

    表  3  EvTouch-Objects数据集实验结果

    模型 方法 Acc(%) TrainingLoss TestLoss
    Dropout L2 Cosine Annealing
    SnnT 89.17±0.36 1.60±0.01 1.13±0.01
    SnnTd 90.63±0.59 2.34±0.01 1.20±0.01
    SnnTl 89.31±0.88 1.71±0.02 1.14±0.01
    SnnTc 89.10±0.57 1.48±0.01 1.12±0.01
    SnnTdl 90.90±0.39 2.38±0.01 1.20±0.01
    SnnTdc 90.49±0.33 2.17±0.01 1.18±0.01
    SnnTlc 89.86±0.67 1.58±0.02 1.12±0.01
    SnnTdlc 91.04±0.39 2.22±0.01 1.18±0.01
    下载: 导出CSV

    表  4  SnnTdlc模型与经典方法在两个数据集下Acc的实验结果(%)

    模型EvTouch-ContainersEvTouch-Objects
    TactileSGNet64.17±2.7589.44±0.55
    Grid-based CNN60.17±2.7888.40±1.14
    MLP58.83±2.4985.97±0.85
    GCN58.83±2.8485.14±1.51
    SnnTd69.17±1.1890.63±0.59
    SnnTdlc67.33±0.8691.04±0.39
    下载: 导出CSV
  • [1] LI Qiang, KROEMER O, SU Zhe, et al. A review of tactile information: Perception and action through touch[J]. IEEE Transactions on Robotics, 2020, 36(6): 1619–1634. doi: 10.1109/TRO.2020.3003230
    [2] WANG Chunfeng, DONG Lin, PENG Dengfeng, et al. Tactile sensors for advanced intelligent systems[J]. Advanced Intelligent Systems, 2019, 1(8): 1900090. doi: 10.1002/aisy.201900090
    [3] DAHIYA R S, METTA G, VALLE M, et al. Tactile sensing—from humans to humanoids[J]. IEEE Transactions on Robotics, 2010, 26(1): 1–20. doi: 10.1109/TRO.2009.2033627
    [4] AHMADI R, PACKIRISAMY M, DARGAHI J, et al. Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery[J]. IEEE Sensors Journal, 2012, 12(1): 22–32. doi: 10.1109/JSEN.2011.2113394
    [5] YEH S K, HSIEH M L, and FANG W. CMOS-based tactile force sensor: A review[J]. IEEE Sensors Journal, 2021, 21(11): 12563–12577. doi: 10.1109/JSEN.2021.3060539
    [6] 程龙, 刘泽宇. 柔性触觉传感技术及其在医疗康复机器人的应用[J]. 控制与决策, 2022, 37(6): 1409–1432. doi: 10.13195/j.kzyjc.2021.1896

    CHENG Long and LIU Zeyu. Flexible tactile sensing technology and its application in medical rehabilitation robots[J]. Control and Decision, 2022, 37(6): 1409–1432. doi: 10.13195/j.kzyjc.2021.1896
    [7] DAHIYA R, YOGESWARAN N, LIU Fengyuan, et al. Large-area soft e-skin: The challenges beyond sensor designs[J]. Proceedings of the IEEE, 2019, 107(10): 2016–2033. doi: 10.1109/JPROC.2019.2941366
    [8] SUNDARAM S, KELLNHOFER P, LI Yunzhu, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698–702. doi: 10.1038/s41586-019-1234-z
    [9] KIM K, SIM M, LIM S H, et al. Tactile avatar: Tactile sensing system mimicking human tactile cognition[J]. Advanced Science, 2021, 8(7): 2002362. doi: 10.1002/advs.202002362
    [10] ZHU Minglu, SUN Zhongda, ZHANG Zixuan, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications[J]. Science Advances, 2020, 6(19): z8693. doi: 10.1126/sciadv.aaz8693
    [11] YAN Youcan, HU Zhe, YANG Zhengbao, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J]. Science Robotics, 2021, 6(51): c8801. doi: 10.1126/scirobotics.abc8801
    [12] BARTOLOZZI C, ROS P M, DIOTALEVI F, et al. Event-driven encoding of off-the-shelf tactile sensors for compression and latency optimisation for robotic skin[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada, 2017: 166–173.
    [13] DAVIES M, WILD A, ORCHARD G, et al. Advancing neuromorphic computing with Loihi: A survey of results and outlook[J]. Proceedings of the IEEE, 2021, 109(5): 911–934. doi: 10.1109/JPROC.2021.3067593
    [14] DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82–99. doi: 10.1109/MM.2018.112130359
    [15] 胡一凡, 李国齐, 吴郁杰, 等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006

    HU Yifan, LI Guoqi, WU Yujie, et al. Spiking neural networks A survey on recent advances and new directions[J]. Control and Decision, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
    [16] 张铁林, 徐波. 脉冲神经网络研究现状及展望[J]. 计算机学报, 2021, 44(9): 1767–1785. doi: 10.11897/SP.J.1016.2021.01767

    ZHANG Tielin and XU Bo. Research advances and perspectives on spiking neural networks[J]. Chinese Journal of Computers, 2021, 44(9): 1767–1785. doi: 10.11897/SP.J.1016.2021.01767
    [17] BARBIER T, TEULIÈRE C, and TRIESCH J. Spike timing-based unsupervised learning of orientation, disparity, and motion representations in a spiking neural network[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1377–1386.
    [18] PAREDES-VALLÉS F, SCHEPER K Y, and DE CROON G C. Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: From events to global motion perception[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2051–2064. doi: 10.1109/TPAMI.2019.2903179
    [19] HAN Bing, SRINIVASAN G, and ROY K. RMP-SNN: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13555–13564.
    [20] DENG Lei, WU Yujie, HU Xing, et al. Rethinking the performance comparison between SNNS and ANNS[J]. Neural Networks, 2020, 121: 294–307. doi: 10.1016/j.neunet.2019.09.005
    [21] LEE J H, DELBRUCK T, and PFEIFFER M. Training deep spiking neural networks using backpropagation[J]. Frontiers in Neuroscience, 2016, 10: 508. doi: 10.3389/fnins.2016.00508
    [22] WU Yujie, DENG Lei, LI Guoqi, et al. Direct training for spiking neural networks: Faster, larger, better[C]. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 1311–1318.
    [23] SEE H H, LIM B, LI Si, et al. ST-MNIST-the spiking tactile MNIST neuromorphic dataset[J]. arXiv: 2005.04319, 2020.
    [24] TAUNYAZOV T, CHUA Yansong, GAO Ruihan, et al. Fast texture classification using tactile neural coding and spiking neural network[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, IEEE, 2020: 9890–9895.
    [25] TAUNYAZOV T, SNG W, SEE H H, et al. Event-driven visual-tactile sensing and learning for robots[J]. arXiv: 2009.07083, 2020.
    [26] GU Fuqaing, SNG Weicong, TAUNYAZOV T, et al. TactileSGNet: A spiking graph neural network for event-based tactile object recognition[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 9876–9882.
    [27] SUSHKO V, GALL J, and KHOREVA A. One-shot GAN: Learning to generate samples from single images and videos[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2596–2600.
    [28] 程曦, 张志勇. 基于人工神经网络的复杂介质中波的传播不确定性分析方法[J]. 电子与信息学报, 2021, 43(12): 3662–3670. doi: 10.11999/JEIT200755

    CHENG Xi and ZHANG Zhiyong. An uncertainty analysis method of wave propagation in complex media based on artificial neural network[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3662–3670. doi: 10.11999/JEIT200755
    [29] 曹毅, 费鸿博, 李平, 等. 基于多流卷积和数据增强的声场景分类方法[J]. 华中科技大学学报(自然科学版), 2022, 50(4): 40–46. doi: 10.13245/j.hust.220407

    CAO Yi, FEI Hongbo, LI Ping, et al. Acoustic scene classification method based on multi-stream convolution and data augmentation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(4): 40–46. doi: 10.13245/j.hust.220407
    [30] GAL Y and GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 1050–1059.
    [31] 李翔, 陈硕, 杨健. 泛化界正则项: 理解权重衰减正则形式的统一视角[J]. 计算机学报, 2021, 44(10): 2122–2134. doi: 10.11897/SP.J.1016.2021.02122

    LI Xiang, CHEN Shuo, and YANG Jian. Generalization bound Regularizer: A unified perspective for understanding weight decay[J]. Chinese Journal of Computers, 2021, 44(10): 2122–2134. doi: 10.11897/SP.J.1016.2021.02122
    [32] KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv: 1412.6980v9, 2014.
    [33] LOSHCHILOV I and HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J]. arXiv: 1608.03983v3, 2016.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  946
  • HTML全文浏览量:  511
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-30
  • 网络出版日期:  2022-08-19
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回