高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动与知识引导结合下人工智能算法模型

金哲 张引 吴飞 朱文武 潘云鹤

金哲, 张引, 吴飞, 朱文武, 潘云鹤. 数据驱动与知识引导结合下人工智能算法模型[J]. 电子与信息学报, 2023, 45(7): 2580-2594. doi: 10.11999/JEIT220700
引用本文: 金哲, 张引, 吴飞, 朱文武, 潘云鹤. 数据驱动与知识引导结合下人工智能算法模型[J]. 电子与信息学报, 2023, 45(7): 2580-2594. doi: 10.11999/JEIT220700
JIN Zhe, ZHANG Yin, WU Fei, ZHU Wenwu, PAN Yunhe. Artificial Intelligence Algorithms Based on Data-driven and Knowledge-guided Models[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2580-2594. doi: 10.11999/JEIT220700
Citation: JIN Zhe, ZHANG Yin, WU Fei, ZHU Wenwu, PAN Yunhe. Artificial Intelligence Algorithms Based on Data-driven and Knowledge-guided Models[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2580-2594. doi: 10.11999/JEIT220700

数据驱动与知识引导结合下人工智能算法模型

doi: 10.11999/JEIT220700
基金项目: 中国工程科技知识中心项目(CKCEST-2021-1-8),国家自然科学基金(62037001)
详细信息
    作者简介:

    金哲:男,博士生,研究方向为自然语言处理和知识图谱

    张引:女,副教授,研究方向为数据挖掘、知识工程

    吴飞:男,教授,研究方向为人工智能、多媒体分析

    朱文武:男,教授,研究方向为多媒体网络计算、大数据智能

    潘云鹤:男,教授,研究方向为人工智能、计算机图形学、智能CAD

    通讯作者:

    张引 yinzh@zju.edu.cn

  • 中图分类号: TN911; TP391

Artificial Intelligence Algorithms Based on Data-driven and Knowledge-guided Models

Funds: China Knowledge Centre for Engineering Sciences and Technology Project (CKCEST-2021-1-8), The National Natural Science Foundation of China (62037001)
  • 摘要: 当前人工智能的学习模式主要以数据驱动为主要手段,以深度神经网络为主流的机器学习算法取得了显著进展。但是这种数据驱动的人工智能手段依然面临数据获取成本高、可解释性弱、鲁棒性不强等不足。该文认为在现有机器学习算法中引入先验假设、逻辑规则和方程公式等知识,建立数据和知识双轮驱动的人工智能方法,将推动更通用计算范式的变革创新。该文将可用于引导人工智能算法模型知识归纳为4种——逻辑知识、视觉知识、物理定律知识和因果知识,探讨将这些知识与现有数据驱动模型相互结合的典型方法。
  • 图  1  可与数据驱动机器学习模型相互结合的4种知识

    图  2  双轮驱动学习算法的常见模式

    表  1  知识引导的典型方法

    知识方法具体思路例子
    逻辑知识知识图谱表示将知识图谱中的实体和关系表示为向量。Bordes等人[35]、Lin等人[117]、Dettmers等人[118]
    约束条件使用知识作为优化的约束条件。Hu等人[39]、Chen等人[40]
    视觉知识视觉知识抽取及应用建立基于视觉知识的闭环学习机制。Wu等人[65]
    构建目标概念的视觉知识字典。Pu等人[62]
    科学定律知识偏微分方程求解流体力学中将不可压纳维-斯托克斯方程组与神经网络损失函数结合。Raissi等人[76]、Jin等人[119]
    生物医学中基于PINN求解心脏激活映射、心血管动脉压力相关函数。Sahli Costabal等人[78]、Kissas等人[120]
    材料领域中基于PINN解决频域麦克斯韦方程组和超材料设计问题、连续体固体力学的几何识别问题。Fang等人[79]、Zhang等人[80]
    电力学中基于PINN求解电力系统动力学中的摆动方程。Misyris等人[121]
    使用神经算子和深度算子网络求解。Li等人[81]、Lu等人[82]
    组合优化问题求解基于自旋哈密顿函数、2元无约束优化等形式训练图神经网络的可微损失函数。Schuetz等人[122]
    先验知识与约束条件蛋白质结构预测中结合蛋白质先验结构、氨基酸链的物理特性约束等知识。Jumper等人[85]、Baek等人[87]、Humphreys等人[88]
    逆合成分析中使用化学反应过程中变化的原子和键构建转化规则集,用于后续蒙特卡罗树搜索。Segler等人[123]
    晶体结构预测中建立晶体结构和生成焓之间的关联模型。Cheng等人[124]
    地表温度反演中使用辐射传递方程作为反演机制的数学推导。Wang等人[125]
    胸部X射线检查中使用基于X射线报告中的知识进行驱动的推理算法提高深度学习模型性能。Jadhav等人[126]
    因果知识引入因果关系尝试将因果关系引入机器学习模型中。Kuang等人[45]、Kuang等
    [46]
    下载: 导出CSV
  • [1] PAN Yunhe. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409–413. doi: 10.1016/J.ENG.2016.04.018
    [2] 李国杰. 国内AI研究“顶不了天、落不了地”, 该想想了[EB/OL]. https://ysg.ckcest.cn/ysgNews/1738635.html, 2021.

    Li Guojie. Domestic AI research cannot be broken throuth and implemented. It is time to think about it. [EB/OL]. https://ysg.ckcest.cn/ysgNews/1738635.html, 2021.
    [3] PEARL J. Radical empiricism and machine learning research[J]. Journal of Causal Inference, 2021, 9(1): 78–82. doi: 10.1515/jci-2021-0006
    [4] ZHANG Ningyu, JIA Qianghuai, DENG Shumin, et al. AliCG: Fine-grained and evolvable conceptual graph construction for semantic search at alibaba[C]. The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 2021: 3895–3905.
    [5] LUO Xusheng, BO Le, WU Jinhang, et al. AliCoCo2: Commonsense knowledge extraction, representation and application in E-commerce[C]. The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 2021: 3385–3393.
    [6] 凡友荣, 杨涛, 孔华锋, 等. 基于知识图谱的电信欺诈通联特征挖掘方法[J]. 计算机应用与软件, 2019, 36(11): 182–187. doi: 10.3969/j.issn.1000-386x.2019.11.030

    FAN Yourong, YANG Tao, KONG Huafeng, et al. Calling features mining method of telecom fraud based on knowledge graph[J]. Computer Applications and Software, 2019, 36(11): 182–187. doi: 10.3969/j.issn.1000-386x.2019.11.030
    [7] 许振亮, 刘喜美. 电信诈骗研究的知识图谱分析[J]. 中国刑警学院学报, 2017(3): 50–56. doi: 10.14060/j.issn.2095-7939.2017.03.007

    XU Zhenliang and LIU Ximei. The knowledge mapping analysis of telecommunication fraud[J]. Journal of China Criminal Police University, 2017(3): 50–56. doi: 10.14060/j.issn.2095-7939.2017.03.007
    [8] ANDERSON J R. Cognitive psychology[J]. Artificial Intelligence, 1984, 23(1): 1–11. doi: 10.1016/0004-3702(84)90002-X
    [9] 潘云鹤. 形象思维中的形象信息模型的研究[J]. 模式识别与人工智能, 1991, 4(4): 7–14.

    PAN Yunhe. Research on image information model in image thinking[J]. Pattern Recognition and Artificial Intelligence, 1991, 4(4): 7–14.
    [10] 潘云鹤. 综合推理的研究[J]. 模式识别与人工智能, 1996, 9(3): 201–208.

    PAN Yunhe. The synthesis reasoning[J]. Pattern Recognition and Artificial Intelligence, 1996, 9(3): 201–208.
    [11] PAN Yunhe. On visual knowledge[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(8): 1021–1025. doi: 10.1631/FITEE.1910001
    [12] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [13] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [17] LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    [18] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [19] ZHU Chenchen, CHEN Fangyi, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8778–8787.
    [20] HU Hanzhe, BAI Shuai, LI Aoxue, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10180–10189.
    [21] PAN Yunhe. Miniaturized five fundamental issues about visual knowledge[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(5): 615–618. doi: 10.1631/FITEE.2040000
    [22] 曾庆存. 天气预报——由经验到物理数学理论和超级计算[J]. 物理, 2013, 42(5): 300–314. doi: 10.7693/wl20130501

    ZENG Qingcun. Weather forecast——from empirical to physicomathematical theory and super-computing system engineering[J]. Physics, 2013, 42(5): 300–314. doi: 10.7693/wl20130501
    [23] 邓海游, 贾亚, 张阳. 蛋白质结构预测[J]. 物理学报, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701

    DENG Haiyou, JIA Ya, and ZHANG Yang. Protein structure prediction[J]. Acta Physica Sinica, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [24] 杜其通, 刘朝雨, 闵剑, 等. 基于人工神经网络的动力学参数辨识法[J]. 高技术通讯, 2020, 30(5): 495–500. doi: 10.3772/j.issn.1002-0470.2020.05.008

    DU Qitong, LIU Zhaoyu, MIN Jian, et al. Dynamic parameter identification method based on artificial neural network[J]. Chinese High Technology Letters, 2020, 30(5): 495–500. doi: 10.3772/j.issn.1002-0470.2020.05.008
    [25] 黄铭枫, 刘国星, 王义凡, 等. 耦合台风天气预报模式和实测数据的神经网络风速预测[J]. 建筑结构学报, 2022, 43(3): 98–108. doi: 10.14006/j.jzjgxb.2020.0563

    HUANG Mingfeng, LIU Guoxing, WANG Yifan, et al. Neural network forecasts of typhoon wind speeds coupled with WRF and measured data[J]. Journal of Building Structures, 2022, 43(3): 98–108. doi: 10.14006/j.jzjgxb.2020.0563
    [26] BRIDGERS S, BUCHSBAUM D, SEIVER E, et al. Children’s causal inferences from conflicting testimony and observations[J]. Developmental Psychology, 2016, 52(1): 9–18. doi: 10.1037/a0039830
    [27] MAICAS G, BRADLEY A P, NASCIMENTO J C, et al. Training medical image analysis systems like radiologists[C]. 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 2018: 546–554.
    [28] LI Liu, XU Mai, WANG Xiaofei, et al. Attention based glaucoma detection: A large-scale database and CNN model[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10563–10572.
    [29] XIE Xiaozheng, NIU Jianwei, LIU Xuefeng, et al. A survey on incorporating domain knowledge into deep learning for medical image analysis[J]. Medical Image Analysis, 2021, 69: 101985. doi: 10.1016/j.media.2021.101985
    [30] RATNER A, BACH S H, EHRENBERG H, et al. Snorkel: Rapid training data creation with weak supervision[J]. The VLDB Journal, 2020, 29(2/3): 709–730. doi: 10.1007/s00778-019-00552-1
    [31] YU Yue, ZUO Simiao, JIANG Haoming, et al. Fine-tuning pre-trained language model with weak supervision: A contrastive-regularized self-training approach[C/OL]. The 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 1063–1077.
    [32] LIEM C C S, LANGER M, DEMETRIOU A, et al. Psychology meets machine learning: Interdisciplinary perspectives on algorithmic job candidate screening[M]. ESCALANTE H J, ESCALERA S, GUYON I, et al. Explainable and Interpretable Models in Computer Vision and Machine Learning. Cham: Springer, 2018: 197–253.
    [33] JACKSON P T G, ATAPOUR-ABARGHOUEI A, BONNER S, et al. Style augmentation: Data augmentation via style randomization[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 83–92.
    [34] HWANG Y, CHO H, YANG Hongsun, et al. Mel-spectrogram augmentation for sequence to sequence voice conversion[J]. arXiv preprint arXiv: 2001.01401, 2020.
    [35] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
    [36] SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: Knowledge graph embedding by relational rotation in complex space[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
    [37] KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
    [38] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv: 1710.10903, 2017.
    [39] HU Zhiting, MA Xuezhe, LIU Zhengzhong, et al. Harnessing deep neural networks with logic rules[C]. The 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016: 2410–2420.
    [40] CHEN Xiang, ZHANG Ningyu, XIE Xin, et al. KnowPrompt: Knowledge-aware prompt-tuning with synergistic optimization for relation extraction[C]. The ACM Web Conference 2022, Lyon, France, 2022: 2778–2788.
    [41] JIN Zhe, ZHANG Yin, KUANG Haodan, et al. Named entity recognition in traditional Chinese medicine clinical cases combining BiLSTM-CRF with knowledge graph[C]. 12th International Conference on Knowledge Science, Engineering and Management, Athens, Greece, 2019: 537–548.
    [42] HE Qizhen, WU Liang, YIN Yida, et al. Knowledge-graph augmented word representations for named entity recognition[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 7919–7926.
    [43] LOGAN R, LIU N F, PETERS M E, et al. Barack’s wife Hillary: Using knowledge graphs for fact-aware language modeling[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 5962–5971.
    [44] ZHANG Zhengyan, HAN Xu, LIU Zhiyuan, et al. ERNIE: Enhanced language representation with informative entities[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1441–1451.
    [45] LIU Weijie, ZHOU Peng, ZHAO Zhe, et al. K-BERT: Enabling language representation with knowledge graph[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 2901–2908.
    [46] SUN Yu, WANG Shuohuan, LI Yukun, et al. ERNIE 2.0: A continual pre-training framework for language understanding[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 8968–8975.
    [47] CHEN Yu, WU Lingfei, and ZAKI M J. Bidirectional attentive memory networks for question answering over knowledge bases[C]. The 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019: 2913–2923.
    [48] BAUER L, WANG Yicheng, and BANSAL M. Commonsense for generative multi-hop question answering tasks[C]. The 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 4220–4230.
    [49] WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: Knowledge graph attention network for recommendation[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 950–958.
    [50] WAN Guojia, PAN Shirui, GONG Chen, et al. Reasoning like human: Hierarchical reinforcement learning for knowledge graph reasoning[C]. The Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2021: 267.
    [51] WEN Zhang and PENG Yuxin. Multi-level knowledge injecting for visual commonsense reasoning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 1042–1054. doi: 10.1109/TCSVT.2020.2991866
    [52] GAN Leilei, KUANG Kun, YANG Yi, et al. Judgment prediction via injecting legal knowledge into neural networks[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 12866–12874.
    [53] 王玉萍, 曾毅. 人类视觉机制与ROI融合的红外行人检测[J]. 中国测试, 2021, 47(9): 87–93. doi: 10.11857/j.issn.1674-5124.2020100100

    WANG Yuping and ZENG Yi. Pedestrian detection in infrared images using ROI fusion and human visual mechanism[J]. China Measurement &Test, 2021, 47(9): 87–93. doi: 10.11857/j.issn.1674-5124.2020100100
    [54] 许丽娜, 肖奇, 何鲁晓. 考虑人类视觉特征的融合图像评价方法[J]. 武汉大学学报:信息科学版, 2019, 44(4): 546–554. doi: 10.13203/j.whugis20170168

    XU Lina, XIAO Qi, and HE Luxiao. Fused image quality assessment based on human visual characteristics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 546–554. doi: 10.13203/j.whugis20170168
    [55] 申天啸, 韩怡园, 韩冰, 等. 基于人类视觉皮层双通道模型的驾驶员眼动行为识别[J]. 智能系统学报, 2022, 17(1): 41–49. doi: 10.11992/tis.202106051

    SHEN Tianxiao, HAN Yiyuan, HAN Bing, et al. Recognition of driver's eye movement based on the human visual cortex two-stream model[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 41–49. doi: 10.11992/tis.202106051
    [56] BAKHTIARI S, MINEAULT P, LILLICRAP T, et al. The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning[C]. 35th Conference on Neural Information Processing Systems, 2021: 25164–25178.
    [57] GREFF K, KAUFMAN R L, KABRA R, et al. Multi-object representation learning with iterative variational inference[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 2424–2433.
    [58] ZHAO Yongheng, BIRDAL T, DENG Haowen, et al. 3D point capsule networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1009–1018.
    [59] LIANG Yuanzhi, FENG Qianyu, ZHU Linchao, et al. SEEG: Semantic energized Co-speech gesture generation[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10473–10482.
    [60] LUO Yawei, LIU Ping, GUAN Tao, et al. Adversarial style mining for one-shot unsupervised domain adaptation[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1731.
    [61] WU Aming, HAN Yahong, ZHU Linchao, et al. Instance-invariant domain adaptive object detection via progressive disentanglement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4178–4193. doi: 10.1109/TPAMI.2021.3060446
    [62] PU Shiliang, ZHAO Wei, CHEN Weijie, et al. Unsupervised object detection with scene-adaptive concept learning[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(5): 638–651. doi: 10.1631/FITEE.2000567
    [63] STEWART R and ERMON S. Label-free supervision of neural networks with physics and domain knowledge[C]. Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2576–2582.
    [64] PEARL J and MACKENZIE D. The Book of Why: The New Science of Cause and Effect[M]. New York: Basic Books, 2018.
    [65] WU Anpeng, YUAN Junkun, KUANG Kun, et al. Learning decomposed representations for treatment effect estimation[J]. IEEE Transactions on Knowledge and Data Engineering. 2022, 35(5): 4989–5001.
    [66] YUAN Junkun, WU Anpeng, KUANG Kun, et al. Auto IV: Counterfactual prediction via automatic instrumental variable decomposition[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(4): 74. doi: 10.1145/3494568
    [67] KUANG Kun, LI Yunzhe, LI Bo, et al. Continuous treatment effect estimation via generative adversarial de-confounding[J]. Data Mining and Knowledge Discovery, 2021, 35(6): 2467–2497. doi: 10.1007/s10618-021-00797-x
    [68] LOSCH M, FRITZ M, and SCHIELE B. Interpretability beyond classification output: Semantic bottleneck networks[J]. arXiv preprint arXiv: 1907.10882, 2019.
    [69] KUANG Kun, ZHANG Hengtao, WU Runze, et al. Balance-subsampled stable prediction across unknown test data[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(3): 45. doi: 10.1145/3477052
    [70] KUANG Kun, LI Bo, CUI Peng, et al. Stable prediction via leveraging seed variable[J]. arXiv preprint arXiv: 2006.05076, 2020.
    [71] RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations[J]. arXiv preprint arXiv: 1711.10561, 2017.
    [72] RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations[J]. arXiv preprint arXiv: 1711.10566, 2017.
    [73] RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686–707. doi: 10.1016/j.jcp.2018.10.045
    [74] BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: A survey[J]. The Journal of Machine Learning Research, 2017, 18(1): 5595–5637.
    [75] 李野, 陈松灿. 基于物理信息的神经网络: 最新进展与展望[J]. 计算机科学, 2022, 49(4): 254–262. doi: 10.11896/jsjkx.210500158

    LI Ye and CHEN Songcan. Physics-informed neural networks: Recent advances and prospects[J]. Computer Science, 2022, 49(4): 254–262. doi: 10.11896/jsjkx.210500158
    [76] RAISSI M, YAZDANI A, and KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026–1030. doi: 10.1126/science.aaw4741
    [77] RAISSI M, WANG Zhicheng, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861: 119–137. doi: 10.1017/jfm.2018.872
    [78] SAHLI COSTABAL F, YANG Yibo, PERDIKARIS P, et al. Physics-informed neural networks for cardiac activation mapping[J]. Frontiers in Physics, 2020, 8: 42. doi: 10.3389/fphy.2020.00042
    [79] FANG Zhiwei and ZHAN J. Deep physical informed neural networks for metamaterial design[J]. IEEE Access, 2020, 8: 24506–24513. doi: 10.1109/ACCESS.2019.2963375
    [80] ZHANG Enrui, DAO Ming, KARNIADAKIS G E, et al. Analyses of internal structures and defects in materials using physics-informed neural networks[J]. Science Advances, 2022, 8(7): eabk0644. doi: 10.1126/sciadv.abk0644
    [81] LI Zongyi, KOVACHKI N B, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[C/OL]. 9th International Conference on Learning Representations, 2021.
    [82] LU Lu, JIN Pengzhan, PANG Guofei, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218–229. doi: 10.1038/s42256-021-00302-5
    [83] BRANDSTETTER J, WORRALL D E, and WELLING M. Message passing neural PDE solvers[C/OL]. The Tenth International Conference on Learning Representations, 2022.
    [84] SENIOR A W, EVANS R, JUMPER J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706–710. doi: 10.1038/s41586-019-1923-7
    [85] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2
    [86] GABLER F, NAM S Z, TILL S, et al. Protein sequence analysis using the MPI bioinformatics toolkit[J]. Current Protocols in Bioinformatics, 2020, 72(1): e108. doi: 10.1002/cpbi.108
    [87] BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871–876. doi: 10.1126/science.abj8754
    [88] HUMPHREYS I R, PEI Jimin, BAEK M, et al. Computed structures of core eukaryotic protein complexes[J]. Science, 2021, 374(6573): eabm4805. doi: 10.1126/science.abm4805
    [89] KENNEDY J. Swarm intelligence[M]. ZOMAYA A Y. Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies. New York: Springer, 2006: 187–219.
    [90] CHU Shuchuan, RODDICK J F, SU C J, et al. Constrained ant colony optimization for data clustering[C]. 8th Pacific Rim International Conference on Artificial Intelligence, Auckland, New Zealand, 2004: 534–543.
    [91] 陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝: 从单体仿生到群体智能[J]. 电子学报, 2021, 49(12): 2458–2467. doi: 10.12263/DZXB.20201448

    CHEN Jianrui, WANG Jingjing, HOU Xiangwang, et al. Advance into ocean: From bionic monomer to swarm intelligence[J]. Acta Electronica Sinica, 2021, 49(12): 2458–2467. doi: 10.12263/DZXB.20201448
    [92] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484–489. doi: 10.1038/nature16961
    [93] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270
    [94] LI Wei, WU Wenjun, WANG Huaimin, et al. Crowd intelligence in AI 2.0 era[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15–43. doi: 10.1631/FITEE.1601859
    [95] COLORNI A, DORIGO M, and MANIEZZO V. Distributed optimization by ant colonies[C]. The First European Conference on Artificial Life, Paris, France, 1991: 134–142.
    [96] KENNEDY J and EBERHART R. Particle swarm optimization[C]. Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948.
    [97] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法——狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430–2438.

    WU Husheng, ZHANG Fengming, and WU Lushan. New swarm intelligence algorithm—wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430–2438.
    [98] 邢立宁, 陈英武. 基于知识的智能优化引导方法研究进展[J]. 自动化学报, 2011, 37(11): 1285–1289. doi: 10.3724/SP.J.1004.2011.01285

    XING Lining and CHEN Yingwu. Research progress on intelligent optimization guidance approaches using knowledge[J]. Acta Automatica Sinica, 2011, 37(11): 1285–1289. doi: 10.3724/SP.J.1004.2011.01285
    [99] CUCKER F and SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5): 852–862. doi: 10.1109/TAC.2007.895842
    [100] LEE M, TAROKH M, and CROSS M. Fuzzy logic decision making for multi-robot security systems[J]. Artificial Intelligence Review, 2010, 34(2): 177–194. doi: 10.1007/s10462-010-9168-8
    [101] NGUYEN T T, NGUYEN N D, and NAHAVANDI S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826–3839. doi: 10.1109/TCYB.2020.2977374
    [102] 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题[J]. 自动化学报, 2020, 46(7): 1301–1312. doi: 10.16383/j.aas.c200159

    SUN Changyin and MU Chaoxu. Important scientific problems of multi-agent deep reinforcement learning[J]. Acta Automatica Sinica, 2020, 46(7): 1301–1312. doi: 10.16383/j.aas.c200159
    [103] 蒲志强, 易建强, 刘振, 等. 知识和数据协同驱动的群体智能决策方法研究综述[J]. 自动化学报, 2022, 48(3): 627–643. doi: 10.16383/j.aas.c210118

    PU Zhiqiang, YI Jianqiang, LIU Zhen, et al. Knowledge-based and data-driven integrating methodologies for collective intelligence decision making: A survey[J]. Acta Automatica Sinica, 2022, 48(3): 627–643. doi: 10.16383/j.aas.c210118
    [104] 刘云浩. 群智感知计算[J]. 中国计算机学会通讯, 2012, 8(10): 38–41.

    LIU Yunhao. Crowd sensing computing[J]. Communications of the CCF, 2012, 8(10): 38–41.
    [105] HAN Tao, SUN Hailong, SONG Yangqiu, et al. Incorporating external knowledge into crowd intelligence for more specific knowledge acquisition[C]. The Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1541–1547.
    [106] RIVEST R L, ADLEMAN L, and DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169–180.
    [107] KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[J]. arXiv preprint arXiv: 1610.05492, 2016.
    [108] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [109] ZHAO Ning, WU Hao, YU F R, et al. Deep-reinforcement-learning-based latency minimization in edge intelligence over vehicular networks[J]. IEEE Internet of Things Journal, 2022, 9(2): 1300–1312. doi: 10.1109/JIOT.2021.3078480
    [110] SHI Dingyuan, TONG Yongxin, ZHOU Zimu, et al. Learning to assign: Towards fair task assignment in large-scale ride hailing[C]. The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 2021: 3549–3557.
    [111] KELLER J. DARPA to develop swarming unmanned vehicles for better military reconnaissance[J]. Military & Aerospace Electronics, 2017, 28(2): 4–6.
    [112] ARNOLD R, JABLONSKI J, ABRUZZO B, et al. Heterogeneous UAV multi-role swarming behaviors for search and rescue[C]. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), Victoria, Canada, 2020: 122–128.
    [113] HARDY S, HENECKA W, IVEY-LAW H, et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv preprint arXiv: 1711.10677, 2017.
    [114] ZHENG Wenbo, YAN Lan, GOU Chao, et al. Federated meta-learning for fraudulent credit card detection[C]. The Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020: 4654–4660.
    [115] BADDELEY A. Working memory: Looking back and looking forward[J]. Nature Reviews Neuroscience, 2003, 4(10): 829–839. doi: 10.1038/nrn1201
    [116] BADDELEY A D and HITCH G. Working memory[J]. Psychology of Learning and Motivation, 1974, 8: 47–89. doi: 10.1016/S0079-7421(08)60452-1
    [117] LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]. The Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2181–2187.
    [118] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]. The Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, USA, 2018: 1811–1818.
    [119] JIN Xiaowei, CAI Shengze, LI Hui, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. doi: 10.1016/j.jcp.2020.109951
    [120] KISSAS G, YANG Yibo, HWUANG E, et al. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112623. doi: 10.1016/j.cma.2019.112623
    [121] MISYRIS G S, VENZKE A, and CHATZIVASILEIADIS S. Physics-informed neural networks for power systems[C]. 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, Canada, 2020: 1–5.
    [122] SCHUETZ M J A, BRUBAKER J K, and KATZGRABER H G. Combinatorial optimization with physics-inspired graph neural networks[J]. Nature Machine Intelligence, 2022, 4(4): 367–377. doi: 10.1038/s42256-022-00468-6
    [123] SEGLER M H S, PREUSS M, and WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604–610. doi: 10.1038/nature25978
    [124] CHENG Guanjian, GONG Xingao, and YIN Wanjian. Crystal structure prediction by combining graph network and optimization algorithm[J]. Nature Communications, 2022, 13(1): 1492. doi: 10.1038/S41467-022-29241-4
    [125] WANG Han, MAO Kebiao, YUAN Zijin, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote Sensing of Environment, 2021, 265: 112665. doi: 10.1016/j.rse.2021.112665
    [126] JADHAV A, WONG K C L, WU J T, et al. Combining deep learning and knowledge-driven reasoning for chest X-ray findings detection[C]. American Medical Informatics Association Annual Symposium, Chicago, USA, 2020: 593–601.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  2289
  • HTML全文浏览量:  3811
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-08-24
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回