高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用单水听器匀速直线运动直升机三维参数估计算法

张华霞 王惠刚 孙伟涛 古清月 荣少巍

张华霞, 王惠刚, 孙伟涛, 古清月, 荣少巍. 采用单水听器匀速直线运动直升机三维参数估计算法[J]. 电子与信息学报, 2023, 45(6): 2180-2187. doi: 10.11999/JEIT220693
引用本文: 张华霞, 王惠刚, 孙伟涛, 古清月, 荣少巍. 采用单水听器匀速直线运动直升机三维参数估计算法[J]. 电子与信息学报, 2023, 45(6): 2180-2187. doi: 10.11999/JEIT220693
ZHANG Huaxia, WANG Huigang, SUN Weitao, GU Qingyue, RONG Shaowei. 3D Parameters Estimation of Helicopter with Constant Speed Using Single Hydrophone[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2180-2187. doi: 10.11999/JEIT220693
Citation: ZHANG Huaxia, WANG Huigang, SUN Weitao, GU Qingyue, RONG Shaowei. 3D Parameters Estimation of Helicopter with Constant Speed Using Single Hydrophone[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2180-2187. doi: 10.11999/JEIT220693

采用单水听器匀速直线运动直升机三维参数估计算法

doi: 10.11999/JEIT220693
基金项目: 水声对抗技术国家重点实验室项目(JZX7Y201911SY003401),深圳市科技创新委员会基金(CYJ20190806150003606),中央高校基本科研业务费专项资金(D5000220158)
详细信息
    作者简介:

    张华霞:女,博士生,研究方向为阵列信号处理

    王惠刚:男,教授,博士生导师,研究方向为目标检测、参数估计、自适应信息处理

    孙伟涛:男,博士生,研究方向为时频估计、目标检测

    古清月:女,博士生,研究方向为阵列信号处理

    荣少巍:男,博士生,研究方向为目标检测、自适应控制

    通讯作者:

    王惠刚 wanghg74@nwpu.edu.cn

  • 中图分类号: TN911.7

3D Parameters Estimation of Helicopter with Constant Speed Using Single Hydrophone

Funds: The National Key Laboratory Project of Science and Technology on Underwater Acoustic Antagonizing (JZX7Y201911SY003401), The Science, Technology and Innovation Project of Shenzhen Municipality (CYJ20190806150003606), The Fundamental Research Funds for the Central Universities (D5000220158)
  • 摘要: 针对空中匀速飞行运动目标所激发的水声信号特征,该文将传统的2维平面内估计目标飞行高度、速度等参数的问题扩展到3维空间,可以求解飞行时偏航距离,更符合实际情况,解决了空中快速飞行目标状态3维参数估计问题。该文首先以直升机离散线谱为特征声源,建立其在空气-水两层介质中声学多普勒的3维传播模型,考虑了目标的飞行速度、高度和偏离水听器的偏航距离。然后根据多普勒频移曲线及其1阶、2阶导数的不对称性,推导出水下探空应用中飞行器的3维参数估计方法。最后,通过分析单水听器接收的实测信号,验证了文章构建3维空间多普勒频移飞行参数估计模型的合理性及APP-LMS算法相较于短时傅里叶瞬时频率估计算法能够更准确反演直升机的航行参数。
  • 图  1  球面波在空气—水界面的透射示意图

    图  2  空中沿直线运动的点声源与静止水听器节点的3维图

    图  3  空中动点声源与静止水听器节点的几何俯视图

    图  4  声波在两层介质中传播路径的侧视图

    图  5  多普勒频移曲线及其导数的理论结果

    图  6  窗内补零短时傅里叶变换算法估计的多普勒频移曲线及其幅值

    图  7  不同方法所得瞬时频率曲线结果的对比图

    图  8  多普勒频移导数曲线

    表  1  各参数在穿过CPA点前后的变化规律

    位置从负无穷至CPACPA从CPA至正无穷
    $ t $(s)$ - \infty \to 0 $0$ 0 \to + \infty $
    $ \alpha \left( t \right) $(s)$ 0 \to {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2} $$ {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2} $$ {{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2} \to {\pi} $
    $ {\theta _{\text{I}}}\left( t \right) $(s)$ \arcsin {\text{n}} \to \dfrac{{\pi}}{{\text{2}}} - \arctan \dfrac{h}{{{w_{{\text{amin}}}}}} $$ \dfrac{{\pi}}{2} - \arctan \dfrac{h}{{{w_{{\text{amin}}}}}} $$\dfrac{ {\pi} }{2} - \arctan \dfrac{h}{ { {w_{ {\text{amin} } } } } } \to \arcsin {{n} }$
    $ {\theta _{\text{T}}}\left( t \right) $(s)$ \dfrac{{\pi}}{2} \to \dfrac{{\pi}}{2} - \arctan \dfrac{d}{{{w_{{\text{wmin}}}}}} $$ \dfrac{{\pi}}{2} - \arctan \dfrac{d}{{{w_{{\text{wmin}}}}}} $$ \dfrac{{\pi}}{2} - \arctan \dfrac{d}{{{w_{{\text{wmin}}}}}} \to \dfrac{{\pi}}{2} $
    下载: 导出CSV
  • [1] 修建娟, 张敬艳, 董凯. 基于动力学模型约束的空间目标精确跟踪算法研究[J]. 电子学报, 2021, 49(4): 781–787. doi: 10.12263/DZXB.20200336

    XIU Jianjuan, ZHANG Jingyan, and DONG Kai. Precise tracking algorithm of space target based on dynamic model[J]. Acta Electronica Sinica, 2021, 49(4): 781–787. doi: 10.12263/DZXB.20200336
    [2] 穆森, 李京华, 张恒, 等. 基于谐波集检测的飞行目标水下声探测算法研究[J]. 兵工学报, 2019, 40(5): 1050–1057. doi: 10.3969/j.issn.1000-1093.2019.05.018

    MU Sen, LI Jinghua, ZHANG Heng, et al. Research on underwater acoustic detection algorithm of aerial targets based on harmonic set detection[J]. Acta Armamentarii, 2019, 40(5): 1050–1057. doi: 10.3969/j.issn.1000-1093.2019.05.018
    [3] PENHALE M and BARNARD A. Direction of arrival estimation in practical scenarios using moving standard deviation processing for localization and tracking with acoustic vector sensors[J]. Applied Acoustics, 2020, 168: 107421. doi: 10.1016/j.apacoust.2020.107421
    [4] BUCKINGHAM M J, GIDDENS E M, POMPA J B, et al. Sound from a light aircraft for underwater acoustics experiments?[J]. Acta Acustica United with Acustica, 2002, 88(5): 752–755.
    [5] BUCKINGHAM M J, GIDDENS E M, SIMONET F, et al. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J]. Journal of Computational Acoustics, 2002, 10(4): 445–464. doi: 10.1142/S0218396X02001760
    [6] FERGUSON B G. A ground-based narrow-band passive acoustic technique for estimating the altitude and speed of a propeller-driven aircraft[J]. The Journal of the Acoustical Society of America, 1992, 92(3): 1403–1407. doi: 10.1121/1.403934
    [7] 陈韶华, 陈川, 郑伟. 单矢量水听器线谱多目标分辨研究[J]. 电子与信息学报, 2010, 32(5): 1253–1256. doi: 10.3724/SP.J.1146.2009.00460

    CHEN Shaohua, CHEN Chuan, and ZHENG Wei. Multi-sources distinguishing by exploring line spectra with single acoustic vector sensor[J]. Journal of Electronics &Information Technology, 2010, 32(5): 1253–1256. doi: 10.3724/SP.J.1146.2009.00460
    [8] 王彪, 陈宇, 徐千驰, 等. 非理想条件下基于矢量水听器阵列的一种快速方位估计算法[J]. 电子与信息学报, 2021, 43(3): 745–751. doi: 10.11999/JEIT200541

    WANG Biao, CHEN Yu, XU Qianchi, et al. A fast direction estimation algorithm based on vector hydrophone array under non-ideal conditions[J]. Journal of Electronics &Information Technology, 2021, 43(3): 745–751. doi: 10.11999/JEIT200541
    [9] LO K W and FERGUSON B G. Broadband passive acoustic technique for target motion parameter estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1): 163–175. doi: 10.1109/7.826319
    [10] LO K W. Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node[J]. The Journal of the Acoustical Society of America, 2017, 141(3): 1332–1348. doi: 10.1121/1.4976091
    [11] 刘凯悦, 彭朝晖, 张灵珊, 等. 水下水平阵对空中运动声源的线谱探测[J]. 声学学报, 2019, 44(4): 566–575. doi: 10.15949/j.cnki.0371-0025.2019.04.017

    LIU Kaiyue, PENG Zhaohui, ZHANG Lingshan, et al. Line spectrum detection of airborne moving source by underwater horizontal array[J]. Acta Acustica, 2019, 44(4): 566–575. doi: 10.15949/j.cnki.0371-0025.2019.04.017
    [12] 安春莲, 杨古月, 杨延菊. 基于中值滤波预处理的强冲击噪声背景测向方法[J]. 电子学报, 2021, 49(6): 1159–1166. doi: 10.12263/DZXB.20200392

    AN Chunlian, YANG Guyue, and YANG Yanju. DOA estimation under strong impulsive noise based on median value filtering[J]. Acta Electronica Sinica, 2021, 49(6): 1159–1166. doi: 10.12263/DZXB.20200392
    [13] URICK R J. Noise signature of an aircraft in level flight over a hydrophone in the sea[J]. The Journal of the Acoustical Society of America, 1972, 52(1A): 172. doi: 10.1121/1.1982074
    [14] FERGUSON B G, CULVER R L, and GEMBA K L. International student challenge problem in acoustic signal processing 2019[J]. Acoustics Today, 2019, 15(1): 71–73. doi: 10.1121/AT.2019.15.1.73
    [15] DIPASSIO III J. Tre DiPassio’s solution to the 2019 international student challenge problem in acoustic signal processing[EB/OL]. https://static1.squarespace.com/static/5d362ec264480900010504be/t/5d765d6527a38b3a5d5be508/1568038249817/TreDiPassio_ChallengeProblem2019Solution.pdf, 2019.
    [16] SUN Weitao, WANG Huigang, GU Qingyue, et al. Exact frequency estimation in the i. i. d. noise via KL divergence of accumulated power[J]. IEEE Communications Letters, 2021, 25(8): 2574–2578. doi: 10.1109/LCOMM.2021.3077315
    [17] SUN Weitao, WANG Huigang, GU Qingyue, et al. Exact and robust time-frequency estimation via accumulation of phase-difference power on multiple log-sum[EB/OL]. https://doi.org/10.13140/RG.2.2.21036.59523, 2021.
    [18] SADEGHI M, BEHNIA F, and AMIRI R. Window selection of the Savitzky-Golay filters for signal recovery from noisy measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(8): 5418–5427. doi: 10.1109/TIM.2020.2966310
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  134
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-08-24
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-08-30
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回