高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车载资源约束下的控制器域网络异常检测自适应优化方法

张金锋 张震 刘少勋 邬江兴

张金锋, 张震, 刘少勋, 邬江兴. 车载资源约束下的控制器域网络异常检测自适应优化方法[J]. 电子与信息学报, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
引用本文: 张金锋, 张震, 刘少勋, 邬江兴. 车载资源约束下的控制器域网络异常检测自适应优化方法[J]. 电子与信息学报, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
Citation: ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692

车载资源约束下的控制器域网络异常检测自适应优化方法

doi: 10.11999/JEIT220692
基金项目: 河南省重大科技专项(221100240100),郑州市重大科技创新专项(2021KJZX0060-3)
详细信息
    作者简介:

    张金锋:男,高级工程师,研究方向为智能网联汽车广义功能安全、AI安全

    张震:男,副教授,研究方向为智能网联汽车广义功能安全、网络测量与管理

    刘少勋:男,高级工程师,研究方向为智能网联汽车广义功能安全、工业互联网拟态安全

    邬江兴:男,教授,研究方向为内生安全、多模态网络等

    通讯作者:

    张金锋 zhangjinfeng@pmlabs.com.cn

  • 中图分类号: TN919.5

Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints

Funds: The Major Science and Technology Project of Henan Province (221100240100), The Major Science and Technology Innovation Special Project of Zhengzhou (2021KJZX0060-3)
  • 摘要: 针对在有限的车载资源约束条件下,如何兼顾控制器域网络(CAN)异常检测准确度和时效性的问题,该文提出一种CAN网络异常检测自适应优化方法。首先,基于信息熵建立了CAN网络异常检测的准确度和时效性量化指标,并将CAN网络异常检测建模为多目标优化问题;然后,设计了求解多目标优化问题的第二代非支配排序遗传算法(NSGA-II),将帕累托前沿作为CAN网络异常检测模型参数的优化调整空间,提出了满足不同场景需求的检测模型鲁棒控制机制。通过实验分析,深入剖析了优化参数对异常检测的影响,验证了所提方法能够在有限车载资源下适应多样化检测场景需求。
  • 图  1  CAN网络数据结构

    图  2  部分攻击CAN报文逃避检测的情况

    图  3  适应多样化场景的CAN网络异常检测优化方法总体思路

    图  4  基于NSGA-II的CAN网络异常检测优化算法流程

    图  5  适应多样化检测场景的鲁棒控制机制总体流程

    图  6  不同采样窗口大小条件下的CAN报文信息熵变化趋势

    图  7  不同采样窗口大小条件下的入侵检测准确度变化情况

    图  8  不同滑动尺度下的CAN报文信息熵变化情况

    图  9  不同滑动尺度下的入侵检测准确度变化情况

    图  10  不同滑动尺度下的入侵检测时效性变化情况

    图  11  不同灵敏度下的入侵检测准确度变化趋势

    图  12  多目标优化方法实验案例计算结果

    图  13  本文方法在不同检测场景下的适用性分析

    图  14  报文数量递增策略下的检测准确度比较分析

    图  15  注入频次递减策略下的检测准确度比较分析

    算法1 基于信息熵检测CAN报文的准确度算法
     输入:CAN 报文集合$ {S_{{\text{data}}}} $
     输出:检测准确度$P ({\bf{IDS}} )$
     (1) 从$ {S_{{\text{data}}}} $中提取CAN 报文ID集$ {S_{{\text{ID}}}} $;
     (2) 循环计算每个滑动窗口CAN报文的检测准确度:
       (a) 利用式(2)计算滑动窗口内的CAN报文ID 信息熵$H{\text{(} }{\bf{IDS}}{\text{)} }$;
       (b)将$H{\text{(} }{\bf{IDS}}{\text{)} }$与$S{\text{(} }{\bf{IDS}}{\text{)} }$进行比较,若$H{\text{(} }{\bf{IDS}}{\text{)} } \in S{\text{(} }{\bf{IDS}}{\text{)} }$,则
         判断窗口内报文正常;
       (c) 将检测结果与实际结果比较,得到单次检测的准确度;
       (d) 并统计未被列入检测窗口的正常消息比例。
     (3) 综合每次窗口滑动检测结果,利用式(4)计算最终准确度。
    下载: 导出CSV

    表  1  CAN报文实验数据集

    数据集数量ID范围
    Normal300000x001~0x7ff
    DoS360000x000~0x7ff
    Injection360000x000~0x7ff
    下载: 导出CSV

    表  2  本文所提优化方法的帕累托前沿

    序号参数准确度时效性
    窗口大小滑动尺度阈值区间灵敏度
    12742.36251.0000.1290
    25462.41460.9990.1000
    32112.38210.9940.0448
    420622.55230.9920.0096
    下载: 导出CSV
  • [1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2] 吴武飞, 李仁发, 曾刚, 等. 智能网联车网络安全研究综述[J]. 通信学报, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130

    WU Wufei, LI Renfa, ZENG Gang, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on Communications, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130
    [3] 中国汽车工程学会. 智能网联汽车信息安全白皮书[R]. 中国智能网联汽车产业创新联盟成立大会, 2017.

    China Society of Automotive Engineering. White paper on intelligent network automobile information security[R]. Inaugural Conference of China Intelligent Connected Vehicle Industry Innovation Alliance, 2017.
    [4] KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 447–462.
    [5] CHECKOWAY S, MCCOY D, KANTOR B, et al. Comprehensive experimental analyses of automotive attack surfaces[C]. The 20th USENIX Conference on Security, San Francisco, USA, 2011: 447–462.
    [6] WOO S, JO H J, and LEE D H. A practical wireless attack on the connected car and security protocol for in-vehicle CAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 993–1006. doi: 10.1109/TITS.2014.2351612
    [7] SONG H M, KIM H R, and KIM H K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network[C]. 2016 International Conference on Information Networking, Kota Kinabalu, Malaysia, 2016: 63–68.
    [8] YANG Yun, DUAN Zongtao, and TEHRANIPOOR M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal[J]. Smart Cities, 2020, 3(1): 17–30. doi: 10.3390/smartcities3010002
    [9] JING Ning and LIU Jiajia. An experimental study towards attacker identification in automotive networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [10] YANG Yuanda, XIE Guoqi, WANG Jilong, et al. Intrusion detection for in-vehicle network by using single GAN in connected vehicles[J]. Journal of Circuits, Systems and Computers, 2021, 30(1): 2150007. doi: 10.1142/S0218126621500079
    [11] LI Yang, MOUBAYED A, HAMIEH I, et al. Tree-based intelligent intrusion detection system in internet of vehicles[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
    [12] KANG Minju and KANG J W. A novel intrusion detection method using deep neural network for in-vehicle network security[C]. 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5.
    [13] CASILLO M, COPPOLA S, DE SANTO M, et al. Embedded intrusion detection system for detecting attacks over CAN-BUS[C]. 2019 4th International Conference on System Reliability and Safety, Rome, Italy, 2019: 136–141.
    [14] VAN WYK F, WANG Yiyang, KHOJANDI A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264–1276. doi: 10.1109/TITS.2019.2906038
    [15] BHATIA R, KUMAR V, SERAG K, et al. Evading voltage-based intrusion detection on automotive CAN[C]. 28th Annual Network and Distributed System Security Symposium (NDSS), 2021.
    [16] CHOI W, JOO K, JO H J, et al. Voltageids: Low-level communication characteristics for automotive intrusion detection system[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2114–2129. doi: 10.1109/TIFS.2018.2812149
    [17] LEE H, JEONG S H, and KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame[C]. 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, Canada, 2017: 57–66.
    [18] HALDER S, CONTI M, and DAS S K. COIDS: A clock offset based intrusion detection system for controller area networks[C]. The 21st International Conference on Distributed Computing and Networking, Kolkata, India, 2020: 22.
    [19] CHO K T and SHIN K G. Fingerprinting electronic control units for vehicle intrusion detection[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 911–927.
    [20] MÜTER M and ASAJ N. Entropy-based anomaly detection for in-vehicle networks[C]. 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 1110–1115.
    [21] VIRMANI D, TANEJA S, CHAWLA T, et al. Entropy deviation method for analyzing network intrusion[C]. 2016 International Conference on Computing, Communication and Automation, Greater Noida, India, 2016: 515–519.
    [22] ZHAO Yuntao, ZHANG Wenbo, FENG Yongxin, et al. A classification detection algorithm based on joint entropy vector against application-layer DDoS attack[J]. Security and Communication Networks, 2018, 2018: 9463653. doi: 10.1155/2018/9463653
    [23] WANG Qian, LU Zhaojun, and QU Gang. An entropy analysis based intrusion detection system for controller area network in vehicles[C]. 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, USA, 2018: 90–95.
    [24] 于赫, 秦贵和, 孙铭会, 等. 车载CAN总线网络安全问题及异常检测方法[J]. 吉林大学学报:工学版, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034

    YU He, QIN Guihe, SUN Minghui, et al. Cyber security and anomaly detection method for in-vehicle CAN[J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034
    [25] 董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    [26] MARCHETTI M, STABILI D, GUIDO A, et al. Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms[C]. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 2016: 1–6.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  270
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-09-09
  • 网络出版日期:  2022-09-15
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回