Near-far Field Hybrid Channel Model Based on Massive Reconfigurable Intelligent Surface
-
摘要: 近来,可重构智能表面(RIS)作为一种全新的革命性技术引起了学术界和工业界的广泛关注。随着通信频率的提高以及RIS孔径的增大,RIS辅助无线通信的工作条件逐渐靠近天线的近场辐射模式,而非仅仅存在传统意义中的远场辐射。单独考虑远场或者近场的信道模型均无法准确刻画RIS辅助无线通信的传输特性,造成性能损失。针对此问题,该文梳理了大规模RIS辅助通信近场和远场信道模型,通过引入权重因子,构建了大规模RIS辅助无线通信场景下近远场混合信道模型。在此基础上,推导了近远场混合信道模型下系统的增益与损耗,并进行鲁棒性分析,仿真结果表明该混合模型带来的系统增益与模型鲁棒性均显著提升。Abstract: Recently, Reconfigurable Intelligent Surface (RIS) has attracted a lot of attention from both academia and industry as a new revolutionary technology. With the increase of communication frequency and the RIS elements, the operating conditions of RIS-assisted wireless communication are gradually approaching the near field radiation pattern of antennas, not just the existence of far field radiation in the traditional sense. Considering either far field or near field, the transmission characteristics of RIS-assisted wireless communication can not be portrayed accurately by the channel model, which results in a loss in performance. In order to solve the problem, a hybrid near-far field channel model is established for massive RIS-assisted communication in this paper by introducing a weighting factor. The gain, the loss and the robustness analysis of the hybrid system are derived in this paper. It is indicated that the hybrid model brings significant improvement in the gain of system and the robustness of model according to the simulation results.
-
Key words:
- Reconfigurable Intelligent Surface (RIS) /
- Near field /
- Far field /
- Hybrid channel model
-
表 1 仿真参数配置
参数 数值 波长$ \lambda $ 0.1 m 元素间距$ d $ 0.05 m 发射天线增益$ {G_t} $ 30 dB 接收天线增益$ {G_r} $ 15 dB 噪声功率$ {\sigma ^2} $ –70 dB 信噪比阈值$ {\gamma _t} $ 60 dB -
[1] BJORNSON E, VAN DER PERRE L, BUZZI S, et al. Massive MIMO in Sub-6 GHz and mmWave: Physical, practical, and use-case differences[J]. IEEE Wireless Communications, 2019, 26(2): 100–108. doi: 10.1109/MWC.2018.1800140 [2] NEMATI M, MAHAM B, POKHREL S R, et al. Modeling RIS empowered outdoor-to-indoor communication in mmWave cellular networks[J]. IEEE Transactions on Communications, 2021, 69(11): 7837–7850. doi: 10.1109/TCOMM.2021.3104878 [3] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055 [4] YING Keke, GAO Zhen, LYU Shanxiang, et al. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO[J]. IEEE Access, 2020, 8: 19530–19539. doi: 10.1109/ACCESS.2020.2968456 [5] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811 [6] BJÖRNSON E, DEMIR Ö T, and SANGUINETTI L. A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces[C]. 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021: 105–112. [7] BJÖRNSON E and SANGUINETTI L. Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1306–1324. doi: 10.1109/OJCOMS.2020.3020925 [8] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887 [9] CHEN Yuhang, YAN Longfei, and HAN Chong. Hybrid spherical- and planar-wave modeling and DCNN-powered estimation of terahertz ultra-massive MIMO channels[J]. IEEE Transactions on Communications, 2021, 69(10): 7063–7076. doi: 10.1109/TCOMM.2021.3098696 [10] WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015 [11] HAN Yu, JIN Shi, WEN Chaokai, et al. Channel estimation for extremely large-scale massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 633–637. doi: 10.1109/LWC.2019.2963877 [12] CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400 [13] WEI Xiuhong and DAI Linglong. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?[J]. IEEE Communications Letters, 2022, 26(1): 177–181. doi: 10.1109/LCOMM.2021.3124927 [14] JIANG Yuhua, GAO Feifei, JIAN Mengnan, et al. Reconfigurable intelligent surface for near field communications: Beamforming and sensing[EB/OL]. https://doi.org/10.48550/arXiv.2204.10114, 2022. [15] GUERRA A, GUIDI F, DARDARI D, et al. Near-field tracking with large antenna arrays: Fundamental limits and practical algorithms[J]. IEEE Transactions on Signal Processing, 2021, 69: 5723–5738. doi: 10.1109/TSP.2021.3101696 [16] ABU-SHABAN Z, KEYKHOSRAVI K, KESKIN M F, et al. Near-field localization with a reconfigurable intelligent surface acting as lens[C]. ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021. [17] SHERMAN J. Properties of focused apertures in the Fresnel region[J]. IRE Transactions on Antennas and Propagation, 1962, 10(4): 399–408. doi: 10.1109/TAP.1962.1137900 [18] BEN CHEIKH D, KELIF J M, COUPECHOUX M, et al. SIR distribution analysis in cellular networks considering the joint impact of path-loss, shadowing and fast fading[J]. EURASIP Journal on Wireless Communications and Networking, 2011, 2011: 137. doi: 10.1186/1687-1499-2011-137 [19] LI Sai, YANG Linag, DA COSTA D B, et al. On the performance of RIS-assisted dual-hop mixed RF-UWOC systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 340–353. doi: 10.1109/TCCN.2021.3058670 [20] ANSARI I S, AL-AHMADI S, YILMAZ F, et al. A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels[J]. IEEE Transactions on Communications, 2011, 59(10): 2654–2658. doi: 10.1109/TCOMM.2011.063011.100303A