高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式智能反射面的物理层安全通信研究

冯友宏 张彦峨 董国青

冯友宏, 张彦峨, 董国青. 基于分布式智能反射面的物理层安全通信研究[J]. 电子与信息学报, 2023, 45(6): 2081-2088. doi: 10.11999/JEIT220659
引用本文: 冯友宏, 张彦峨, 董国青. 基于分布式智能反射面的物理层安全通信研究[J]. 电子与信息学报, 2023, 45(6): 2081-2088. doi: 10.11999/JEIT220659
FENG Youhong, ZHANG Yan’e, DONG Guoqing. Research on Physical Layer Security Communication Based on Distributed Intelligent Reflective Surface[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2081-2088. doi: 10.11999/JEIT220659
Citation: FENG Youhong, ZHANG Yan’e, DONG Guoqing. Research on Physical Layer Security Communication Based on Distributed Intelligent Reflective Surface[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2081-2088. doi: 10.11999/JEIT220659

基于分布式智能反射面的物理层安全通信研究

doi: 10.11999/JEIT220659
基金项目: 国家自然科学基金(62071005),安徽省自然科学基金(2008085MF181),安徽省高校自然科学研究项目(KJ2019A0936)
详细信息
    作者简介:

    冯友宏:男,教授,博士生导师,研究方向为5G/6G移动通信、智能通信、网络安全

    张彦峨:女,硕士生,研究方向为5G/6G移动通信、信息论安全

    董国青:女,博士生,研究方向为5G/6G移动通信、智能通信

    通讯作者:

    张彦峨 zye1505657@163.com

  • 中图分类号: TN92

Research on Physical Layer Security Communication Based on Distributed Intelligent Reflective Surface

Funds: The National Natural Science Foundation of China (62071005), The Natural Science Foundation of Anhui Province (2008085MF181), The Natural Science Research Program of Anhui Educational Committee (KJ2019A0936)
  • 摘要: 智能反射面(IRS)能够实时调整无线传输环境提高通信效率,在后5G和6G研究中得到广泛关注。该文研究分布式IRSs安全速率最大化问题:考虑功率和恒模约束以及IRS链路之间的相关性,以最大化安全传输速率为目标,构建基站波束成形和IRSs相移参数联合优化问题。采用分式规划和流形优化算法求解构建的非凸优化方程。仿真结果表明,相较于传统算法,该文算法具有较高处理效率有效提高系统安全性,也进一步表明分布式部署IRS比集中部署安全性能更优。
  • 图  1  非视距场景下的分布式IRS辅助MISO通信系统

    图  2  分布式IRS辅助MISO系统仿真场景

    图  3  系统安全性能与总功率的关系

    图  4  系统安全性能与发射功率的关系

    图  5  系统安全性能与IRSs个数、总反射单元数的关系

    图  6  系统安全性能与总功率的关系

    算法1 IRSs相移优化算法
     (1) 设置迭代次数$r = 0{\boldsymbol{}} $;
     (2) 重复执行如下操作:
      根据式(11)计算$y_1^{*r} = \dfrac{ {{\boldsymbol{v}}_{}^{\text{H} }{\boldsymbol{a}}} }{ {1 + { {\left| {{\boldsymbol{v}}_{}^{\text{H} }{\boldsymbol{b}}} \right|}^2} } },y_2^{*r} =$$\dfrac{1}{{1 + {{\left| {v_{}^{\text{H}}b} \right|}^2}}} $;
      采用MO算法获取${{\boldsymbol{v}}^{r + 1} }$;
      更新$r = r + 1,{\boldsymbol{v}} = {v^{r + 1} }$;
      直至优化问题P3收敛;
     (3) 获取当前相移矩阵${{\boldsymbol{\varTheta}} }_{l}=\text{diag}({({{\boldsymbol{v}}}_{l}^{r})}^{*}),\forall L$。
    下载: 导出CSV
    算法2 交替迭代优化算法
     (1) 设置迭代次数$ i = 0 $, ${ {\boldsymbol{w} }^{\left( 0 \right)} } = \dfrac{ { {{\boldsymbol{h}}_{r,l} } } }{ {\left\| { {{\boldsymbol{h}}_{r,l} } } \right\|} }$,
      ${\boldsymbol{\varTheta}} _l^{(0)} = {\text{diag} }({1_1}, \cdots ,{1_{ {M_l} } })$, $R_s^{(0)}({\boldsymbol{w}},{{\boldsymbol{\varTheta}} _l})$, $ \varepsilon $;
     (2) 重复执行如下操作:
      $ i = i + 1 $;
      给定${\boldsymbol{\varTheta } }_l^{(i - 1)}$,根据式(7)更新${{\boldsymbol{w}}^{(i)} }{\text{ = } }$$\sqrt { {P_{\max } } } {\lambda _{\max } }(\overline {\boldsymbol{X}} _e^{ - 1}{\overline {\boldsymbol{X}} _u})$;
      给定${{\boldsymbol{w}}^{\left( i \right)} }$,根据表1更新${\boldsymbol{\varTheta}} _l^{(i)}$;
      计算${\boldsymbol{R}}_s^{(i)}({{\boldsymbol{w}}^i},{\boldsymbol{\varTheta}} _l^i)$;
      直至$\left| {\dfrac{ {R_s^{(i)} - R_s^{(i - 1)} } }{ {R_s^{(i)} } } } \right| \le \varepsilon$;
     (3) 获取${ {\boldsymbol{\varTheta} } }_{l}^{*}={ {\boldsymbol{\varTheta} } }_{l}^{(i)},\forall L,{{\boldsymbol{w}}}^{*}={{\boldsymbol{w}}}^{\left(i\right)}$。
    下载: 导出CSV
  • [1] LIU Rang, LI Ming, LIU Qian, et al. Joint symbol-level precoding and reflecting designs for IRS-enhanced MU-MISO systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 798–811. doi: 10.1109/TWC.2020.3028371
    [2] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [3] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 129. doi: 10.1186/s13638-019-1438-9
    [4] DI RENZO M, NTONTIN K, SONG Jian, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society, 2020, 1: 798–807. doi: 10.1109/OJCOMS.2020.3002955
    [5] BJÖRNSON E, ÖZDOGAN Ö, and LARSSON E G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?[J]. IEEE Wireless Communications Letters, 2020, 9(2): 244–248. doi: 10.1109/LWC.2019.2950624
    [6] CHRAITI M, GHRAYEB A, and ASSI C. Achieving full secure degrees-of-freedom for the MISO wiretap channel with an unknown eavesdropper[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7066–7079. doi: 10.1109/TWC.2017.2738638
    [7] HE Xiang and YENER A. MIMO wiretap channels with unknown and varying eavesdropper channel states[J]. IEEE Transactions on Information Theory, 2014, 60(11): 6844–6869. doi: 10.1109/TIT.2014.2359192
    [8] SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924214
    [9] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [10] JIANG Weiheng, ZHANG Yu, WU Jinsong, et al. Intelligent reflecting surface assisted secure wireless communications with multiple-transmit and multiple-receive antennas[J]. IEEE Access, 2020, 8: 86659–86673. doi: 10.1109/ACCESS.2020.2992613
    [11] XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for secure IRS-assisted multiuser MISO systems[C]. 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, USA, 2019: 1–6.
    [12] FENG Keming, WANG Qisheng, LI Xiao, et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 745–749. doi: 10.1109/LWC.2020.2969167
    [13] LI Zhengfeng, HUA Meng, WANG Qingxia, et al. Weighted sum-rate maximization for Multi-IRS aided cooperative transmission[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1620–1624. doi: 10.1109/LWC.2020.2999356
    [14] YU Zhanwei and YUAN Di. On resource optimization in Multi-IRS-assisted and interference-coupled multi-cell systems[C]. The 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2021: 1408–1412.
    [15] HANLEN L and GRANT A. Capacity analysis of correlated MIMO channels[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6773–6787. doi: 10.1109/TIT.2012.2216393
    [16] BYERS G J and TAKAWIRA F. Spatially and temporally correlated MIMO channels: Modeling and capacity analysis[J]. IEEE Transactions on Vehicular Technology, 2004, 53(3): 634–643. doi: 10.1109/TVT.2004.825766
    [17] YAN Shihao, ZHOU Xiangyun, YANG Nan, et al. Artificial-Noise-Aided secure transmission in wiretap channels with transmitter-side correlation[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8286–8297. doi: 10.1109/TWC.2016.2613860
    [18] TSAI J A, BUEHRER R M, and WOERNER B D. Spatial fading correlation function of circular antenna arrays with Laplacian energy distribution[J]. IEEE Communications Letters, 2002, 6(5): 178–180. doi: 10.1109/4234.1001656
    [19] KHISTI A and WORNELL G W. Secure transmission with multiple antennas I: The MISOME wiretap channel[J]. IEEE Transactions on Information Theory, 2010, 56(7): 3088–3104. doi: 10.1109/TIT.2010.2048445
    [20] FENG Keming, LI Xiao, HAN Yu, et al. Physical layer security enhancement exploiting intelligent reflecting surface[J]. IEEE Communications Letters, 2021, 25(3): 734–738. doi: 10.1109/LCOMM.2020.3042344
    [21] SHEN Kaiming and YU Wei. Fractional programming for communication systems—Part II: Uplink scheduling via matching[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2631–2644. doi: 10.1109/TSP.2018.2812748
    [22] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  689
  • HTML全文浏览量:  650
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-08-31
  • 录用日期:  2022-09-08
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回