高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度强化学习的无人机可信地理位置路由协议

张雅楠 仇洪冰

张雅楠, 仇洪冰. 基于深度强化学习的无人机可信地理位置路由协议[J]. 电子与信息学报, 2022, 44(12): 4211-4217. doi: 10.11999/JEIT220649
引用本文: 张雅楠, 仇洪冰. 基于深度强化学习的无人机可信地理位置路由协议[J]. 电子与信息学报, 2022, 44(12): 4211-4217. doi: 10.11999/JEIT220649
ZHANG Yanan, QIU Hongbing. Trusted Geographic Routing Protocol Based on Deep Reinforcement Learning for Unmanned Aerial Vehicle Network[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4211-4217. doi: 10.11999/JEIT220649
Citation: ZHANG Yanan, QIU Hongbing. Trusted Geographic Routing Protocol Based on Deep Reinforcement Learning for Unmanned Aerial Vehicle Network[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4211-4217. doi: 10.11999/JEIT220649

基于深度强化学习的无人机可信地理位置路由协议

doi: 10.11999/JEIT220649
基金项目: 广西自然科学基金(2022GXNSFDA035070)
详细信息
    作者简介:

    张雅楠:女,博士生,研究方向为无人机智能化与网络化、天地一体化网络技术

    仇洪冰:男,教授,研究方向为移动通信、超宽带无线通信、宽带通信网络、通信信号处理

    通讯作者:

    张雅楠 ynzannilinden@163.com

  • 中图分类号: TN915.04; V279

Trusted Geographic Routing Protocol Based on Deep Reinforcement Learning for Unmanned Aerial Vehicle Network

Funds: The Natural Science Foundation of Guangxi (2022GXNSFDA035070)
  • 摘要: 针对无人机(UAV)通信过程中存在的高移动性和节点异常问题,该文提出一种基于深度强化学习的无人机可信地理位置路由协议(DTGR)。引入可信第三方提供节点的信任度,使用理论与真实的时延偏差和丢包率作为信任度的评估因子,将路由选择建模为马尔可夫决策过程(MDP),基于节点信任度、地理位置和邻居拓扑信息构建状态空间,然后通过深度Q网络(DQN)输出路由决策。在奖励函数中结合信任度调整动作的价值,引导节点选择最优下一跳。仿真结果表明,在包含异常节点的无人机自组网(UANET)中,DTGR与现有方案相比具有更低的平均端到端时延和更高的包递交率。当异常节点数量或者比例变化时,DTGR能感知环境并高效智能地完成路由决策,保障网络性能。
  • 图  1  本文构建的DQN模型

    图  2  DTGR协议架构

    图  3  不同协议的训练曲线

    图  4  异常节点比例对协议性能的影响

    图  5  总节点数量对协议性能的影响

    表  1  DTGR路由选择算法(算法1)

     输入:当前节点位置${L_c} $,数据包$p $,邻居表${{\rm{NT}}_c}$。
     输出:动作${a^*} $。
     步骤1:if当前节点$c $是终点则算法结束;
         else转步骤2~11;
     步骤2:根据${{\rm{NT}}_c}$构建邻居编号集合${V_0} $;
     步骤3:构建可选下一跳集合${V_l} = {V_0} - {\rm{HVN}}$;
     步骤4:if ${V_l} $为空集则算法结束;
         else转步骤5~11;
     步骤5:对节点集
     $\forall {\kern 1pt} {\kern 1pt} {{\rm{ID}}_i} \in {V_l},i = 1,2, \cdots ,|{V_l}|$迭代步骤6;
     步骤6:构建${ {\rm{ID} }_i}$的输入特征向量:
         ${\bf{in}}{\kern 1pt} {\kern 1pt} [i] = {\rm{feature}}({L_c},p,{{\rm{NT}}_c})$;
     步骤7:将${[{\bf{in}}]_{\left| { {V_l} } \right| \times 5} }$归一化后使用DQN网络预测可选下一跳的
         ${{Q} }$值向量${\boldsymbol{Q} }_c $:
         ${ {\boldsymbol{Q} }_c} = {\rm{DQN} }({\bf{in} }) = [{q_1},{q_2}, \cdots ,{q_{\left| { {V_l} } \right|} }]_{1 \times |{V_l}|}^{\rm{T} }$;
     步骤8:if当前处在训练阶段,转步骤9,10;
         else转步骤11;
     步骤9:将本次决策获得的经验e放入经验回放池,更新DQN网
         络参数;
     步骤10:根据式(13)和${{\boldsymbol{Q}}_c}$选择动作${a^*} $;
     步骤11:根据公式${a^*} = {\mathop {\arg \max }\limits_{ {q_a} \in { {\boldsymbol{Q} }_c} } }\;\hat Q(s,a;{\boldsymbol{\theta} } )$选择动作${a^*} $。
     算法结束
    下载: 导出CSV

    表  2  仿真实验参数

    仿真参数设定值
    仿真区域大小(km)2×2
    无人机数量40~120
    无人机移动速度(m/s)3~10
    通信半径(m)350
    信标广播周期(s)0.5
    数据包发送频率(Hz)1
    数据包大小(kb)1
    数据包传输速率(Mbps)1
    异常节点比例0.05~0.25
    正常节点信任度阈值0.7~1.0
    异常节点信任度阈值0.3~0.6
    经验回放池大小2000
    DQN学习率$ \alpha $0.001
    信任权重$ \tau $5
    折扣因子$ \gamma $0.99
    贪心算法参数$ \varepsilon $0.05
    下载: 导出CSV
  • [1] BUSHNAQ O M, CHAABAN A, and AL-NAFFOURI T Y. The role of UAV-IoT networks in future wildfire detection[J]. IEEE Internet of Things Journal, 2021, 8(23): 16984–16999. doi: 10.1109/JIOT.2021.3077593
    [2] FENG Wanmei, TANG Jie, YU Yu, et al. UAV-enabled SWIPT in IoT networks for emergency communications[J]. IEEE Wireless Communications, 2020, 27(5): 140–147. doi: 10.1109/MWC.001.1900656
    [3] BOURSIANIS A D, PAPADOPOULOU M S, DIAMANTOULAKIS P, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review[J]. Internet of Things, 2022, 18: 100187. doi: 10.1016/j.iot.2020.100187
    [4] KHAWAJA W, OZDEMIR O, and GUVENC I. UAV air-to-ground channel characterization for mmWave systems[C]. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5.
    [5] CHEN I R, BAO Fenye, CHANG M J, et al. Dynamic trust management for delay tolerant networks and its application to secure routing[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(5): 1200–1210. doi: 10.1109/TPDS.2013.116
    [6] CHO J H, SWAMI A, and CHEN I R. A survey on trust management for mobile ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2011, 13(4): 562–583. doi: 10.1109/SURV.2011.092110.00088
    [7] HYLAND M T, MULLINS B E, BALDWIN R O, et al. Simulation-based performance evaluation of mobile ad hoc routing protocols in a swarm of unmanned aerial vehicles[C]. 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), Niagara Falls, Canada, 2007: 249–256.
    [8] KARP B and KUNG H T. GPSR: Greedy perimeter stateless routing for wireless networks[C]. The 6th Annual International Conference on Mobile Computing and Networking, Boston, USA, 2000: 243–254.
    [9] JUNG W S, YIM J, and KO Y B. QGeo: Q-learning-based geographic ad hoc routing protocol for unmanned robotic networks[J]. IEEE Communications Letters, 2017, 21(10): 2258–2261. doi: 10.1109/LCOMM.2017.2656879
    [10] LYU Niqi, SONG Guanghua, YANG Bowei, et al. QNGPSR: A Q-network enhanced geographic ad-hoc routing protocol based on GPSR[C]. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018: 1–6.
    [11] LIU Jianmin, WANG Qi, HE Chentao, et al. QMR: Q-learning based multi-objective optimization routing protocol for flying ad hoc networks[J]. Computer Communications, 2020, 150: 304–316. doi: 10.1016/j.comcom.2019.11.011
    [12] ZHU Haojin, DU Suguo, GAO Zhaoyu, et al. A probabilistic misbehavior detection scheme toward efficient trust establishment in delay-tolerant networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 22–32. doi: 10.1109/TPDS.2013.36
    [13] CHO J H and CHEN I R. PROVEST: Provenance-based trust model for delay tolerant networks[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 151–165. doi: 10.1109/TDSC.2016.2530705
    [14] GE Chunpeng, ZHOU Lu, HANCKE G P, et al. A provenance-aware distributed trust model for resilient unmanned aerial vehicle networks[J]. IEEE Internet of Things Journal, 2021, 8(16): 12481–12489. doi: 10.1109/JIOT.2020.3014947
    [15] DJEDJIG N, TANDJAOUI D, MEDJEK F, et al. Trust-aware and cooperative routing protocol for IoT security[J]. Journal of Information Security and Applications, 2020, 52: 102467. doi: 10.1016/j.jisa.2020.102467
    [16] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  294
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-01
  • 网络出版日期:  2022-07-05
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回