高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单兵通信系统头盔天线研究进展

李建 晚雷天 鲜承伟 周粤丹 黄文逸 黄勇军 文光俊

李建, 晚雷天, 鲜承伟, 周粤丹, 黄文逸, 黄勇军, 文光俊. 单兵通信系统头盔天线研究进展[J]. 电子与信息学报, 2023, 45(7): 2375-2385. doi: 10.11999/JEIT220613
引用本文: 李建, 晚雷天, 鲜承伟, 周粤丹, 黄文逸, 黄勇军, 文光俊. 单兵通信系统头盔天线研究进展[J]. 电子与信息学报, 2023, 45(7): 2375-2385. doi: 10.11999/JEIT220613
LI Jian, WAN Leitian, XIAN Chengwei, ZHOU Yuedan, HUANG Wenyi, HUANG Yongjun, WEN Guangjun. Research Progress on Helmet Antenna in Individual Soldier Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2375-2385. doi: 10.11999/JEIT220613
Citation: LI Jian, WAN Leitian, XIAN Chengwei, ZHOU Yuedan, HUANG Wenyi, HUANG Yongjun, WEN Guangjun. Research Progress on Helmet Antenna in Individual Soldier Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2375-2385. doi: 10.11999/JEIT220613

单兵通信系统头盔天线研究进展

doi: 10.11999/JEIT220613
基金项目: 国家自然科学基金(61971113, 61901095),国家重点研发计划(2018YFB1802102, 2018AAA0103203)
详细信息
    作者简介:

    李建:男,副研究员,研究方向为通信电路与系统、新型人工电磁结构及天线应用

    晚雷天:男,硕士生,研究方向为新型人工电磁结构及天线应用

    鲜承伟:男,博士生,研究方向为异频共形阵列天线技术及应用

    周粤丹:女,硕士生,研究方向为新型可重构人工电磁结构及波调控应用

    黄文逸:男,硕士生,研究方向为物联网器件及应用

    黄勇军:男,副教授,研究方向为物联网器件、新型人工电磁结构及天线应用

    文光俊:男,教授,研究方向为通信电路与系统、物联网系统

    通讯作者:

    黄勇军 yongjunh@uestc.edu.cn

  • 中图分类号: TN828

Research Progress on Helmet Antenna in Individual Soldier Communication System

Funds: The National Natural Science Foundation of China (61971113, 61901095), The National Key R&D Program (2018YFB1802102, 2018AAA0103203)
  • 摘要: 头盔天线是指以特殊的人工结构或材料共形到单兵可穿戴头盔上的一种天线,它是单兵无线通信系统中的核心器件。当前的头盔天线研究仅关注辐射全向性、大宽带、高增益和低比吸收率(SAR)中的某一方面或两个方面,难以满足快速发展的战术通信要求。近年来各种基于人工磁导体、超构材料等新型材料/结构的天线设计和阻抗匹配方法被相继提出,使得头盔天线有望突破增益、带宽、尺寸、重量和电磁辐射之间相互制约的技术难题。该文旨在通过系统总结国内外对于头盔天线在控制辐射方向、扩展带宽、增益提高、抑制比吸收率的研究进展之基础上,展望未来头盔天线重点突破的技术方向,并提出一种基于非福斯特电路的圆形阵列头盔天线技术构想。
  • 图  1  早期全向头盔天线方案[27-29]

    图  2  半波长环形全向头盔天线设计[31]

    图  3  低轮廓全向辐射头盔天线[32,34,36]

    图  4  头盔天线宽带化研究[38-41]

    图  5  非福斯特电路原理图[43,44]

    图  6  宽带化小型化超表面天线

    图  7  高增益低SAR值头盔天线相关研究[53-57]

    表  1  电导率对天线指标的影响[55]

    电导率$\sigma $天线增益(dBi)相对带宽(%)最大SAR值(W/kg)
    5.8×105–5.40.770.243
    5.8×106–4.60.620.364
    5.8×107–4.40.410.498
    下载: 导出CSV
  • [1] 高国平. 无线体域网(WBAN)中超宽带及可穿戴天线的研究[D]. [博士论文], 兰州大学, 2016.

    GAO Guoping. Study of ultra wideband and wearable antenna in wireless body area network (WBAN)[D]. [Ph. D. dissertation], Lanzhou University, 2016.
    [2] 吴强. 可穿戴微带共形天线阵的研究[D]. [硕士论文], 西安电子科技大学, 2010.

    WU Qiang. On the conformal microstrip arrays for body wearable applications[D]. [Master dissertation], Xidian University, 2010.
    [3] YAN Sen, SOH P J, and VANDENBOSCH G A E. Low-profile dual-band textile antenna with artificial magnetic conductor plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6487–6490. doi: 10.1109/TAP.2014.2359194
    [4] SHAKHIRUL M S, JUSOH M, ISMAIL A H, et al. Reconfigurable frequency with circular polarization for on-body wearable textile antenna[C]. The 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016.
    [5] HU Bin, GAO Guoping, HE Lele, et al. Bending and on-arm effects on a wearable antenna for 2.45 GHz body area network[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 378–381. doi: 10.1109/LAWP.2015.2446512
    [6] LEE H and CHOI J. A polarization reconfigurable textile patch antenna for wearable IoT applications[C]. 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 2017.
    [7] ASHYAP A Y I, ABIDIN Z Z, DAHLAN S H, et al. Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications[J]. IEEE Access, 2018, 6: 77529–77541. doi: 10.1109/ACCESS.2018.2883379
    [8] SUN Hucheng, HU Yan, REN Rui, et al. Design of pattern-reconfigurable wearable antennas for body-centric communications[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(8): 1385–1389. doi: 10.1109/LAWP.2020.3002016
    [9] AHMED M I and AHMED M F. Design and fabrication of multi-band wearable fractal antenna for telehealth applications[J]. Journal of Physics:Conference Series, 2020, 1447: 012006. doi: 10.1088/1742-6596/1447/1/012006
    [10] MURAMATSU D, KOSHIJI F, KOSHIJI K, et al. Input impedance analysis of wearable antenna and its experimental study with real human body[C]. 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2014.
    [11] CHEN S J, RANASINGHE D C, and FUMEAUX C. A robust snap-on button solution for reconfigurable wearable textile antennas[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4541–4551. doi: 10.1109/TAP.2018.2851288
    [12] PEI Rui, LEACH M P, LIM E G, et al. Wearable EBG-backed belt antenna for smart on-body applications[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 7177–7189. doi: 10.1109/TII.2020.2983064
    [13] ALI A M, EL ATRASH M, ZAHRAN S R, et al. A low profile flexible circularly polarized antenna for wearable and WLAN applications[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019.
    [14] ALEMARYEEN A and NOGHANIAN S. On-body low-profile textile antenna with artificial magnetic conductor[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 3649–3656. doi: 10.1109/TAP.2019.2902632
    [15] MORISHITA H and MICHISHITA N. Characteristics of helmet antennas at VHF band[C]. 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), Vasteras, Sweden, 2018.
    [16] LEBARIC J and TAN A T. Ultra-wideband conformal helmet antenna[C]. 2020 Asia-Pacific Microwave Conference. Proceedings, Sydney, Australia, 2000.
    [17] WANG Yufang, GE Yuehe, and CHEN Zhizhang. Wideband High-gain circularly-polarized antenna based on reflective metasurface with cross-polarization conversion[C]. 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 2020.
    [18] TABASSUM S, SHIL A, and JAHAN N. Wideband circularly polarized metamaterial based antenna employing metasurface structure[C]. The 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 2020.
    [19] GAO Guoping, MENG Huijia, GENG Wenfei, et al. A wideband metasurface antenna with dual-band dual-mode for body-centric communications[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 149–153. doi: 10.1109/LAWP.2021.3121585
    [20] KRISTOU N, PINTOS J F, and MAHDJOUBI K. Low profile dipole antenna over compact AMC surface[C]. 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), Athens, Greece, 2017.
    [21] WANG Zhendong, JIAO Yongchang, ZHANG Yixuan, et al. Wideband AMC surface and applications to low profile circularly polarized slot antennas[C]. 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019.
    [22] HUANG Huifen and ZHANG Jian. High-efficiency multifunction metasurface based on polarization sensitivity[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1508–1512. doi: 10.1109/LAWP.2021.3089283
    [23] BONG H U, JEONG M J, HUSSAIN N, et al. A high gain parabolic antenna based on gradient metasurface[C]. The 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), Incheon, Korea (South), 2019.
    [24] ZHANG Haoran and SHAMIM A. Gain and efficiency enhancement of a 77 GHz on-chip antenna through AMC and superstrate package[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018.
    [25] LV Yanhe, WANG Ren, DING Xiao, et al. Anisotropic metasurface for high-gain radiation and low RCS by spoof surface Plasmon polariton[C]. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 2020.
    [26] REN Xiaolei, LIN Shan, GE Yuehe, et al. A high-gain dual circularly-polarized antenna based on metasurface polarizer[C]. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, 2020.
    [27] WANG J J H, TILLERY J K, BOHANNAN K E, et al. Helmet-mounted smart array antenna[C]. The IEEE Antennas and Propagation Society International Symposium 1997, Montreal, Canada, 1997.
    [28] TILLERY J K, THOMPSON G T, and WANG J J H. Low-power low-profile multifunction helmet-mounted smart array antenna[C]. The IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Orlando, USA, 1999.
    [29] WANG J J H. Broadband omnidirectional helmet antennas[C]. 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, 2006.
    [30] WANG Qian and XI Xiaoli. Design of combination antenna of whip antenna and quadrifilar helix antenna[C]. The 8th International Conference on Electronic Measurement and Instruments, Xi'an, China, 2007.
    [31] PARK J Y, RYU H K, and WOO J M. Helmet installed antenna using a half-wavelength circular loop antenna[C]. 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, USA, 2007.
    [32] NGUYEN-TRONG N, PIOTROWSKI A, KAUFMANN T, et al. Low-profile wideband monopolar UHF antennas for integration onto vehicles and helmets[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2562–2568. doi: 10.1109/TAP.2016.2551291
    [33] RAEKER B O and RUDOLPH S M. Verification of arbitrary radiation pattern control using a cylindrical impedance metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 995–998. doi: 10.1109/LAWP.2016.2616106
    [34] RAEKER B O and RUDOLPH S M. Spherical metasurface for radiation pattern control[C]. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, USA, 2016.
    [35] ZHANG Zhilin, WU Wei, and WU Zhao. Pattern reconfigurable metasurface antenna with five states[C]. 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019.
    [36] 梁舒. 超宽带可穿戴天线[D]. [硕士论文], 电子科技大学, 2021.

    LIANG Shu. Ultra-wideband (UWB) wearable antenna[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [37] FANO R M. Theoretical limitations on the broadband matching of arbitrary impedances[J]. Journal of the Franklin Institute, 1950, 249(1): 57–83. doi: 10.1016/0016-0032(50)90006-8
    [38] HEROLD D, GRIFFITHS L, and FUNG T Y. Lightweight, high-bandwidth conformal antenna system for ballistic helmets[C]. The MILCOM 2007-IEEE Military Communications Conference, Orlando, USA, 2007.
    [39] WANG J J H and TRIPLETT D J. Multioctave broadband body-wearable helmet and vest antennas[C]. 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, USA, 2007.
    [40] NAKAO T, HUNG N T, NAGATOSHI M, et al. Fundamental study on curved folded dipole antenna[C]. The 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012.
    [41] CAO Yunfei, ZHANG Xiuyin, and MO Te. Low-profile conical-pattern slot antenna with wideband performance using artificial magnetic conductors[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2210–2218. doi: 10.1109/TAP.2018.2809619
    [42] 周朝栋, 王元坤, 周良明. 线天线理论与工程[M]. 西安: 西安电子科技大学出版社, 1988.

    ZHOU Chaodong, WANG Yuankun, and ZHOU Liangming. Wire Antenna Theory and Engineering[M]. Xi'an: Xidian University Press, 1988.
    [43] 张飞飞. 天线的宽带小型化技术研究[D]. [硕士论文], 西安电子科技大学, 2011.

    ZHANG Feifei. Study of wideband and miniaturized antennas[D]. [Master dissertation], Xidian University, 2011.
    [44] NIANG Anna, DE LUSTRAC A, PIAU G P, et al. VHF antenna miniaturization using external non-foster matching circuit[J]. Microwave and Optical Technology Letters, 2017, 59(4): 986–991. doi: 10.1002/mop.30441
    [45] FORD K L and RIGELSFORD J M. Antenna radiation pattern control using EBG/AMC surfaces for street furniture applications[C]. 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, USA, 2007.
    [46] BJÖRNINEN T and YANG Fan. Low-profile head-worn antenna with a monopole-like radiation pattern[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 794–797. doi: 10.1109/LAWP.2015.2475158
    [47] FORD K L and RIGELSFORD J M. Street furniture antenna radiation pattern control using AMC surfaces[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 3049–3052. doi: 10.1109/TAP.2008.928808
    [48] LIN Fenghan and CHEN Zhining. Low-profile wideband metasurface antennas using characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1706–1713. doi: 10.1109/TAP.2017.2671036
    [49] YAN Sen, ZHANG Kai, and SOH P J. A wideband wearable antenna based on metasurface[C]. 2020 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, 2020.
    [50] RADCHENKO V V, SAULEAU R, and NOSICH A I. Effect of metallic helmet on the microwave absorption in a spherical phantom of a dipole antenna user head[C]. 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 2006.
    [51] PRAKASH P, ABEGAONKAR M P, BASU A, et al. Gain enhancement of a CPW-Fed monopole antenna using polarization-insensitive AMC structure[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1315–1318. doi: 10.1109/LAWP.2013.2285121
    [52] ARAND B A and BAZRKAR A. Gain enhancement of a multiband square-loop patch antenna using an AMC-PEC substrate and a radome[C]. The 7'th International Symposium on Telecommunications (IST'2014), Tehran, Iran, 2014.
    [53] SAITA Y, ITO T, MICHISHITA N, et al. Low-frequency inverted-F antenna on hemispherical ground plane[C]. 2014 International Symposium on Antennas and Propagation Conference, Kaohsiung, China, 2014.
    [54] NISHIYAMA N, MICHISHITA N, and MORISHITA H. SAR reduction of helmet antenna composed of folded dipole with slit-loaded ring[C]. 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, Australia, 2015.
    [55] MICHISHITA N, SAITA Y, MORISHITA H, et al. Helmet-mounted inverted-f antenna at VHF band[J]. Journal of Advanced Simulation in Science and Engineering, 2020, 7(2): 291–299. doi: 10.15748/jasse.7.291
    [56] ISLAM H, DAS S, BOSE T, et al. High efficient dual band stacked antennas integrated into rescue helmets for indoor communication[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(10): 1103–1108. doi: 10.1017/S1759078721000064
    [57] ÇELENK E and TOKAN N T. Frequency scanning conformal sensor based on SIW metamaterial antenna[J]. IEEE Sensors Journal, 2021, 21(14): 16015–16023. doi: 10.1109/JSEN.2021.3075556
    [58] LIU Beijia, QIU Jinghui, WANG Chunlong, et al. Pattern-reconfigurable cylindrical dielectric resonator antenna based on parasitic elements[J]. IEEE Access, 2017, 5: 25584–25590. doi: 10.1109/ACCESS.2017.2771296
    [59] ARAND B A, BAZRKAR A, and ZAHEDI A. Design of a phased array in triangular grid with an efficient matching network and reduced mutual coupling for wide-angle scanning[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2983–2991. doi: 10.1109/TAP.2017.2690903
    [60] LIU Beijia, QIU Jinghui, LAN Shengchang, et al. Pattern reconfigurable dielectric resonator antenna actuated by shorted parasitic elements[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019.
    [61] LIN Jiahong, XIE Xiaotong, QI Song, et al. A wide-angle scanning phased array based on dual-mode pattern-reconfigurable dielectric resonator antennas[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 2020.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  659
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-07-14
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回