高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间探索和认知图构建的生物启发式目标导向导航模型

周阳 吴德伟 宋毅 代传金

周阳, 吴德伟, 宋毅, 代传金. 基于空间探索和认知图构建的生物启发式目标导向导航模型[J]. 电子与信息学报, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578
引用本文: 周阳, 吴德伟, 宋毅, 代传金. 基于空间探索和认知图构建的生物启发式目标导向导航模型[J]. 电子与信息学报, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578
ZHOU Yang, WU Dewei, SONG Yi, DAI Chuanjin. Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578
Citation: ZHOU Yang, WU Dewei, SONG Yi, DAI Chuanjin. Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578

基于空间探索和认知图构建的生物启发式目标导向导航模型

doi: 10.11999/JEIT220578
基金项目: 国家自然科学基金(61973314)
详细信息
    作者简介:

    周阳:男,博士,工程师,研究方向为运行体智能自主导航、类脑导航等

    吴德伟:男,博士,教授,研究方向为智能导航、量子导航等

    宋毅:男,硕士,助理工程师,研究方向为信息系统与决策支持系统

    代传金:男,博士,副教授,研究方向为类脑导航

    通讯作者:

    周阳 yydayl@sina.cn

  • 中图分类号: TN967; TP273

Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map

Funds: The National Natural Science Foundation of China (61973314)
  • 摘要: 为实现智能自主运行体面向目标的导航知识生成及运行控制,该文研究了一种基于空间探索和认知图构建的生物启发式目标导向(GO)导航模型,该模型由空间探索、认知图构建和GO导航控制3个部分组成。在空间探索中,将网格细胞(GCs)到位置细胞(PCs)模型和视觉位置细胞生成模型融合后生成的位置细胞表征当前状态,利用Q学习算法实现状态-动作的建立及更新,以此学习面向目标运行的导航知识;然后,在认知图构建中,利用重心估计原理对空间探索得到的知识进行处理,生成各位置细胞状态下面向目标的方向信息;最后,运行体在朝目标的运行中,根据得到的认知图实时控制运行方向,以此实现GO导航。仿真结果表明,该GO模型有效,运行体进行充分的空间探索可生成认知图,并以此实现GO导航,且在运行过程中能有效规避障碍物。
  • 图  1  生物启发式GO导航模型

    图  2  空间探索次数为5次时生成的HPCs

    图  3  不同空间探索次数下构建的认知图及从起始位置出发时的目标导向导航情况

    图  4  从不同位置出发时的目标导向导航情况

    图  5  存在障碍物时构建的认知图及从起始位置出发时目标导向导航情况

    表  1  仿真中部分参数

    参数数值
    学习率($ \beta $)0.8
    折扣因子($ \gamma $)0.6
    贪婪因子($ \varepsilon $)0.75
    动作细胞数量(NAC)8
    下载: 导出CSV
  • [1] O’KEEFE J and DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171–175. doi: 10.1016/0006-8993(71)90358-1
    [2] PASSINGHAM R E. The hippocampus as a cognitive map[J]. Neuroscience, 1979, 4(6): 863. doi: 10.1016/0306-4522(79)90015-0
    [3] 赵菁, 赵东花, 王晨光, 等. 基于场景识别的惯性基类脑导航方法[J]. 导航与控制, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014

    ZHAO Jing, ZHAO Donghua, WANG Chenguang, et al. Inertial-based brain-like navigation strategy based on scene recognition[J]. Navigation and Control, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014
    [4] 丛明, 邹强, 刘冬, 等. 定位细胞认知机理启发的机器人导航研究综述[J]. 机械工程学报, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001

    CONG Ming, ZOU Qiang, LIU Dong, et al. Review of robot navigation inspired by the localization cells’ cognitive mechanism[J]. Journal of Mechanical Engineering, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001
    [5] TEJERA G, LLOFRIU M, BARRERA A, et al. Bio-inspired robotics: A spatial cognition model integrating place cells, grid cells and head direction cells[J]. Journal of Intelligent & Robotic Systems, 2018, 91(1): 85–99. doi: 10.1007/s10846-018-0852-2
    [6] MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brain’s spatial representation system[J]. Annual Review of Neuroscience, 2008, 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
    [7] 杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280

    YANG Chuang, LIU Jianye, XIONG Zhi, et al. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280
    [8] 李伟龙, 吴德伟, 卢虎, 等. 基于多尺度空间表征的生物启发目标指引导航模型[J]. 电子与信息学报, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892

    LI Weilong, WU Dewei, LU Hu, et al. Bio-inspired goal-directed navigation model based on multi-scale spatial representation[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892
    [9] HU Lingfang, HAO Kuangrong, CAI Xin, et al. A spatial cognitive cells inspired goal-directed navigation model[C]. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2019: 211–215.
    [10] STRÖSSLIN T, SHEYNIKHOVICH D, CHAVARRIAGA R, et al. Robust self-localisation and navigation based on hippocampal place cells[J]. Neural Networks, 2005, 18(9): 1125–1140. doi: 10.1016/j.neunet.2005.08.012
    [11] SHEYNIKHOVICH D, CHAVARRIAGA R, STRÖSSLIN T, et al. Spatial representation and navigation in a bio-inspired robot[M]. WERMTER S, PALM G, and ELSHAW M. Biomimetic Neural Learning for Intelligent Robots. Berlin: Springer, 2005: 245–264.
    [12] SHEYNIKHOVICH D and ARLEO A. A reinforcement learning approach to model interactions between landmarks and geometric cues during spatial learning[J]. Brain Research, 2010, 1365: 35–47. doi: 10.1016/j.brainres.2010.09.091
    [13] SHEYNIKHOVICH D, DOLLÉ L, CHAVARRIAGA R, et al. Minimal model of strategy switching in the plus-maze navigation task[C]. The 11th International Conference on Simulation of Adaptive Behavior on From Animals to Animats 11, Clos Lucé, France, 2010: 390–401.
    [14] HASSELMO M E. A model of prefrontal cortical mechanisms for goal-directed behavior[J]. Journal of Cognitive Neuroscience, 2005, 17(7): 1115–1129. doi: 10.1162/0898929054475190
    [15] MARTINET L E, SHEYNIKHOVICH D, BENCHENANE K, et al. Spatial learning and action planning in a prefrontal cortical network model[J]. PLoS Computational Biology, 2011, 7(5): e1002045. doi: 10.1371/journal.pcbi.1002045
    [16] LLOFRIU M, TEJERA G, and CONTRERAS M. Goal-oriented robot navigation learning using a multi-scale space representation[J]. Neural Networks, 2015, 72: 62–74. doi: 10.1016/j.neunet.2015.09.006
    [17] 方略, 何洪军. 基于鼠脑海马位置细胞与Q学习面向目标导航[J]. 生物信息学, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001

    FANG Lue and HE Hongjun. Goal oriented navigation based on place cells of rat’s brain hippocampus and Q-learning[J]. Chinese Journal of Bioinformatics, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001
    [18] ZHU Qing, WANG Rubin, and WANG Ziyin. A cognitive map model based on spatial and goal-oriented mental exploration in rodents[J]. Behavioural Brain Research, 2013, 256: 128–139. doi: 10.1016/j.bbr.2013.05.050
    [19] 周阳, 吴德伟. 基于位置细胞的空间表征及位置估计模型[J]. 上海交通大学学报, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015

    ZHOU Yang and WU Dewei. Spatial representation and location estimation model based on place cells[J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015
    [20] ZHOU Yang and WU Dewei. Grid-to-place cells model based on radial basis function network[J]. Electronics Letters, 2017, 53(3): 200–201. doi: 10.1049/el.2016.1750
    [21] ZHOU Yang and WU Dewei. A model of generating visual place cells based on environment perception and similar measure[J]. Computational Intelligence and Neuroscience, 2016, 2016: 3253678. doi: 10.1155/2016/3253678
    [22] ARLEO A and GERSTNER W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity[J]. Biological Cybernetics, 2000, 83(3): 287–299. doi: 10.1007/s004220000171
    [23] 赵辰豪, 吴德伟, 何晶, 等. 基于改进Q学习算法的导航认知图构建[J]. 空军工程大学学报:自然科学版, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008

    ZHAO Chenhao, WU Dewei, HE Jing, et al. Navigation cognitive map construction based on improved Q-learning algorithm[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  139
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-08-21
  • 网络出版日期:  2022-08-30
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回