高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型泡沫材料的龙伯透镜天线设计

燕秀林 史昀祺 朱丽娜

燕秀林, 史昀祺, 朱丽娜. 基于新型泡沫材料的龙伯透镜天线设计[J]. 电子与信息学报, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569
引用本文: 燕秀林, 史昀祺, 朱丽娜. 基于新型泡沫材料的龙伯透镜天线设计[J]. 电子与信息学报, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569
YAN Xiulin, SHI Yunqi, ZHU Lina. Design of Luneburg Lens Antenna Based on Novel Foam Materials[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569
Citation: YAN Xiulin, SHI Yunqi, ZHU Lina. Design of Luneburg Lens Antenna Based on Novel Foam Materials[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569

基于新型泡沫材料的龙伯透镜天线设计

doi: 10.11999/JEIT220569
详细信息
    作者简介:

    燕秀林:女,硕士,副教授,研究方向为微波与电磁场理论

    史昀祺:男,硕士生,研究方向为天线设计

    朱丽娜:女,博士,副教授,研究方向为车联网

    通讯作者:

    朱丽娜 lnzhu@stu.xidian.edu.cn

  • 中图分类号: TN82; TN928

Design of Luneburg Lens Antenna Based on Novel Foam Materials

  • 摘要: 该文利用新型泡沫材料聚甲基丙烯酰亚胺(PMI),设计了一种适用于复杂太空环境探测的毫米波龙伯透镜天线,通过将泡沫材料的密度与介电常数相关联,结合传统龙伯透镜天线的工作原理进行仿真优化,实现了小型化高增益多波束的功能。仿真结果表明:该天线工作于33.7 GHz,增益可以达到25.65 dBi,波束宽度4.17°。该设计方法为将来小型化高增益的龙伯透镜的实现提供了新的思路。
  • 图  1  龙伯透镜原理示意图

    图  2  龙伯透镜仿真模型图

    图  3  r1=32 mm, r4=65 mm下的部分优化方案

    图  4  增益随馈源距离的仿真结果

    图  5  泡沫龙伯球实物图

    图  6  龙伯透镜测试图

    图  7  馈源距离l=3 mm时的远场图

    图  8  测试仿真结果对比图

    表  1  PMI泡沫密度与其电性能参数

    序号123456789
    密度(kg/m3)49.7575.72123.64170.69256.88413.76468.34544.68634.62
    相对介电常数1.0651.1001.1701.2301.3401.5601.6401.7501.880
    损耗正切0.00110.00160.00310.00360.00430.00850.00920.00990.0110
    下载: 导出CSV
  • [1] 王从思, 段宝岩, 仇原鹰, 等. 一种抛物面天线形状误差的合理评价方法[J]. 上海理工大学学报, 2006, 28(1): 14–18. doi: 10.3969/j.issn.1007-6735.2006.01.004

    WANG Congsi, DUAN Baoyan, QIU Yuanying, et al. Improved evaluation for calculating shape errors of parabolic antennas[J]. Journal of University of Shanghai for Science and Technology, 2006, 28(1): 14–18. doi: 10.3969/j.issn.1007-6735.2006.01.004
    [2] 田小永, 吴玲玲, 殷鸣, 等. 宽频大角度新型龙勃透镜设计与快速制造[J]. 机械工程学报, 2016, 52(21): 175–181. doi: 10.3901/JME.2016.21.175

    TIAN Xiaoyong, WU Lingling, YIN Ming, et al. Design and rapid fabrication of broadband wide-angle flattened Luneburg lens[J]. Journal of Mechanical Engineering, 2016, 52(21): 175–181. doi: 10.3901/JME.2016.21.175
    [3] 刘璟. 多波束龙伯透镜天线技术研究[D]. [硕士论文], 电子科技大学, 2010.

    LIU Jing. Research on multi-beam Luneburg lens antenna technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2010.
    [4] 钟鸣海. 分层龙伯透镜天线技术研究[D]. [硕士论文], 电子科技大学, 2009.

    ZHONG Minghai. Research on layered Luneburg lens antenna technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009.
    [5] 郑洪振, 高黎明. 多频多波束龙伯透镜天线在海域覆盖场景下的应用[J]. 移动通信, 2022, 46(3): 87–92. doi: 10.3969/j.issn.1006-1010.2022.03.015

    ZHENG Hongzhen and GAO Liming. Application of multi-frequency and multi-beam Luneburg lens antennas for sea area coverage scenarios[J]. Mobile Communications, 2022, 46(3): 87–92. doi: 10.3969/j.issn.1006-1010.2022.03.015
    [6] LUNEBERG R K. Mathematical Theory of Optics[M]. Providence: Brown University Press, 1944.
    [7] PEELER G and COLEMAN H. Microwave stepped-index Luneberg lenses[J]. IRE Transactions on Antennas and Propagation, 1958, 6(2): 202–207. doi: 10.1109/TAP.1958.1144575
    [8] KOROTKOV A N, SHABUNIN S N, and CHECHETKIN V A. The cylindrical Luneburg lens discretization influence on its radiation parameters[C]. 2017 International Multi-Conferance on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, Novosiboirsk, Russia, 2017, 394–398.
    [9] BOR J, LAFOND O, MERLET H, et al. Foam based Luneburg lens antenna at 60 GHz[J]. Progress in Electromagnetics Research Letters, 2014, 44: 1–7. doi: 10.2528/PIERL13092405
    [10] RHYS T A. The design of radially symmetric lenses[J]. IEEE Transactions on Antennas and Propagation, 1970, 18(4): 497–506. doi: 10.1109/TAP.1970.1139721
    [11] RONDINEAU S, HIMDI M, and SORIEUX J. A sliced spherical Luneburg lens[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2: 163–166. doi: 10.1109/LAWP.2003.819045
    [12] 张广成, 刘伟, 张璋, 等. 聚甲基丙烯酰亚胺(PMI)泡沫的进展[J]. 橡塑技术与装备, 2021, 47(10): 23–30. doi: 10.13520/j.cnki.rpte.2021.10.005

    ZHANG Guangcheng, LIU Wei, ZHANG Zhang, et al. Progress in polymethacrylimide (PMI) foam[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(10): 23–30. doi: 10.13520/j.cnki.rpte.2021.10.005
    [13] KAZANTSEV O A, SHIRSHIN K V, KORNIENKO P V, et al. Achievements and prospects for the synthesis of poly(meth)acrylimide foams. Stage of the thermal imidisation of polymer precursors[J]. Cellular Polymers, 2021, 40(1): 31–52. doi: 10.1177/0262489320934258
    [14] LI Jianwei, WANG Aifeng, QIN Jianbin, et al. Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas[J]. Composites Part A:Applied Science and Manufacturing, 2021, 140: 106144. doi: 10.1016/j.compositesa.2020.106144
    [15] LUNEBURG R K. Mathematical Theory of Optics[M]. Berkeley: University of California Press, 1964: 1–448.
    [16] SCHRANK H E. Precision spherical Luneberg lenses for microwave antennas[C]. 1967 Seventh Electrical Insulation Conference, Chicago, USA, 1967: 179–181.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1081
  • HTML全文浏览量:  834
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-08-19
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回