高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速移动环境下OTSM迭代检测算法研究

李国军 龙锟 叶昌荣 梁佳文

李国军, 龙锟, 叶昌荣, 梁佳文. 高速移动环境下OTSM迭代检测算法研究[J]. 电子与信息学报, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
引用本文: 李国军, 龙锟, 叶昌荣, 梁佳文. 高速移动环境下OTSM迭代检测算法研究[J]. 电子与信息学报, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
Citation: LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541

高速移动环境下OTSM迭代检测算法研究

doi: 10.11999/JEIT220541
基金项目: 国家重点研发计划(2019YFC1511300),重庆市基础研究与前沿探索项目(cstc2021ycjh-bgzxm0072)
详细信息
    作者简介:

    李国军:男,教授,研究方向为复杂恶劣环境超视距无线通信与网络

    龙锟:男,硕士生,研究方向为信道均衡

    叶昌荣:男,讲师,研究方向为信号处理

    梁佳文:男,硕士生,研究方向为信道均衡

    通讯作者:

    叶昌荣 yecr@cqupt.edu.cn

  • 中图分类号: TN926

Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment

Funds: The National Key R& D Program of China (2019YFC1511300), Chongqing Basic Research and Frontier Exploration Project (cstc2021ycjh-bgzxm0072)
  • 摘要: 正交时序复用( Orthogonal Time Sequency Multiplexing, OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度。该文针对高速移动环境下的OTSM系统提出了一种二级均衡器:首先利用信道矩阵的稀疏性和带状结构在时域逐块进行低复杂度MMSE检测;随后采用高斯-赛德尔(GS)迭代检测进一步消除残余符号干扰。仿真结果表明,所提算法与基于单抽头频域均衡的GS迭代检测算法相比,采用16QAM调制且误码率为10–4时有1.8 dB性能增益。
  • 图  1  不同离散信息符号域与相应调制方案之间的关系

    图  2  SM系统收发模型

    图  3  接收机信号处理流程

    图  4  SM系统在不同检测算法下的误码性能

    图  5  SM系统在不同系统参数下的误码性能

    图  6  不同速度下基于单抽头均衡的GS迭代检测和所提算法的误码性能比较

    图  7  基于单抽头均衡的GS迭代OTSM与OTFS检测和所提算法误码性能比较

    图  8  所提算法在不同用户移动速度和信噪比下的误码性能

    算法1 前向替换算法
     计算${{\boldsymbol{r}}^{(1)} } = {{\boldsymbol{L}}^{ - 1} }{\boldsymbol{r}}$
     1:输入:下三角矩阵${{\boldsymbol{L}}_{M \times M} }$和${{\boldsymbol{r}}_{M \times 1} }$
     2:输出:${\boldsymbol{r}}_{M \times 1}^{(1)} = {\boldsymbol{L}}_{M \times M}^{ - 1}{{\boldsymbol{r}}_{M \times 1} }$
     3:${{\boldsymbol{r}}^{(1)} }(0) = {\boldsymbol{r}}(0)$
     4:for$k = 1:\alpha - 1$ do
     5:${{\boldsymbol{r}}^{(1)} }(k) = {\boldsymbol{r}}(k) - \displaystyle\sum _{i = 1}^k{\boldsymbol{L}}(k,k - i){{\boldsymbol{r}}^{(1)} }(k - i)$
     6:end
     7:for$k = \alpha :M - 1$ do
     8:${{\boldsymbol{r}}^{(1)} }(k) = {\boldsymbol{r}}(k) - \displaystyle\sum _{i = 1}^{\alpha - 1}{\boldsymbol{L}}(k,k - i){{\boldsymbol{r}}^{(1)} }(k - i)$
     9:end
    下载: 导出CSV
    算法2 后向替换算法
     计算${{\boldsymbol{r}}^{(2)} } = {{\boldsymbol{U}}^{ - 1} }{{\boldsymbol{r}}^{(1)} }$
     1:输入:上三角矩阵${{\boldsymbol{U}}_{M \times M} }$和${{\boldsymbol{r}}^{(1)} }_{M \times 1}$
     2:输出:${\boldsymbol{r}}_{M \times 1}^{(2)} = {\boldsymbol{U}}_{M \times M}^{ - 1}{\boldsymbol{r}}_{M \times 1}^{(1)}$
     3:${{\boldsymbol{r}}^{(2)} }(M - 1) = \frac{ { {{\boldsymbol{r}}^{(1)} }(M - 1)} }{ {{\boldsymbol{U}}(M - 1,M - 1)} }$
     4:for$k = M - 2:M - \alpha $do
     5:${ {\boldsymbol{r} }^{(2)} }(k) = \dfrac{1}{ { {\boldsymbol{U} }(k,k)} }[{ {\boldsymbol{r} }^{(1)} }(k) - \displaystyle\sum _{i = 1}^{M - k - 1}{\boldsymbol{U} }(k,k + i){ {\boldsymbol{r} }^{(2)} }(k + i)]$
     6:end
     7:for$k = M - \alpha - 1:0$do
     8:${ {\boldsymbol{r} }^{(2)} }(k) = \dfrac{1}{ { {\boldsymbol{U} }(k,k)} }[{ {\boldsymbol{r} }^{(1)} }(k) - \displaystyle\sum _{i = 1}^{\alpha - 1}{\boldsymbol{U} }(k,k + i){ {\boldsymbol{r} }^{(2)} }(k + i)]$
     9:end
    下载: 导出CSV

    表  1  所提接收机中不同操作的计算复杂度

    操作所需复乘次数
    低复杂度LU分解$[{\alpha ^2} + 2\alpha ]MN$
    前向替换算法$N \left[M\alpha - \dfrac{ { {\alpha ^2} } }{2} + \dfrac{\alpha }{2} - 1 \right]$
    反向替换算法$N \left[M(\alpha - 1) - \dfrac{ { {\alpha ^2} } }{2} + \dfrac{\alpha }{2}\right]$
    稀疏矩阵向量乘法$P(\beta + 1)MN$
    下载: 导出CSV

    表  2  仿真参数

    参数
    调制方式16QAM
    $N$16
    $M$128
    载波频率4 GHz
    子载波间隔15 kHz
    信道模型EVA[20]
    用户移动速度500 km/h
    信道估计理想估计
    下载: 导出CSV
  • [1] WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22–32. doi: 10.1109/MVT.2020.3018436
    [2] SAYED A, KHATUN M, AHMED T, et al. Performance analysis of OFDM system on multipath fading and inter symbol interference (ISI) using AWGN[M]. DAS A K, NAYAK J, NAIK B, et al. Computational Intelligence in Pattern Recognition. Singapore: Springer, 2022: 25–36. doi: 10.1007/978-981-16-2543-5_3.
    [3] JIANG T, CHEN H H, WU H C, et al. Channel modeling and inter-carrier interference analysis for V2V communication systems in frequency-dispersive channels[J]. Mobile Networks and Applications, 2010, 15(1): 4–12. doi: 10.1007/s11036-009-0177-2
    [4] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    [5] RAMACHANDRAN M K, SURABHI G D, and CHOCKALINGAM A. OTFS: A new modulation scheme for high-mobility use cases[J]. Journal of the Indian Institute of Science, 2020, 100(2): 315–336. doi: 10.1007/s41745-020-00167-4
    [6] NAVEEN C and SUDHA V. Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]. Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 2020: 140–143. doi: 10.1109/ICDCS48716.2020.243567.
    [7] LI Shuangyang, YUAN Jinhong, YUAN Weijie, et al. Performance analysis of coded OTFS systems over high-mobility channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 6033–6048. doi: 10.1109/TWC.2021.3071493
    [8] RAVITEJA P, HONG Yi, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957–961. doi: 10.1109/TVT.2018.2878891
    [9] ZEMEN T, HOFER M, LÖSCHENBRAND D, et al. Iterative detection for orthogonal precoding in doubly selective channels[C]. Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1–7. doi: 10.1109/PIMRC.2018.8580716.
    [10] THAJ T, VITERBO E, and HONG Yi. Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7842–7855. doi: 10.1109/TWC.2021.3088479
    [11] STOFFER D S. Walsh-Fourier analysis and its statistical applications[J]. Journal of the American Statistical Association, 1991, 86(414): 461–479. doi: 10.1080/01621459.1991.10475067
    [12] HARMUTH H F. Applications of Walsh functions in communications[J]. IEEE Spectrum, 1969, 6(11): 82–91. doi: 10.1109/MSPEC.1969.5214175
    [13] RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
    [14] RAVITEJA P, PHAN K T, JIN Qianyu, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]. Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377159.
    [15] THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276
    [16] LI Li, WEI Hua, HUANG Yao, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels[J]. arXiv: 1709.02505, 2017.
    [17] WALKER D W, ALDCROFT T, CISNEROS A, et al. LU decomposition of banded matrices and the solution of linear systems on hypercubes[C]. Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Pasadena, USA, 1989: 1635–1655. doi: 10.1145/63047.63124.
    [18] BJÖRCK Å. Numerical Methods for Least Squares Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 274–283.
    [19] SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2003: 95–116.
    [20] AHMADI S, SRINIVASAN R, CHOI H, et al. Channel models for IEEE 802.16 m evaluation methodology document[J]. IEEE 802. 16 Broadband Wireless Access Working Group, 2007: 03–12.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  355
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-09-15
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回