高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间敏感网络时隙感知循环排队转发流量整形机制

蔡岳平 任志文

蔡岳平, 任志文. 时间敏感网络时隙感知循环排队转发流量整形机制[J]. 电子与信息学报, 2023, 45(6): 1999-2006. doi: 10.11999/JEIT220530
引用本文: 蔡岳平, 任志文. 时间敏感网络时隙感知循环排队转发流量整形机制[J]. 电子与信息学报, 2023, 45(6): 1999-2006. doi: 10.11999/JEIT220530
CAI Yueping, REN Zhiwen. Traffic Shaping Mechanism Based on Time Slot-Aware Cyclic Queuing and Forwarding in Time-Sensitive Networking[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1999-2006. doi: 10.11999/JEIT220530
Citation: CAI Yueping, REN Zhiwen. Traffic Shaping Mechanism Based on Time Slot-Aware Cyclic Queuing and Forwarding in Time-Sensitive Networking[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1999-2006. doi: 10.11999/JEIT220530

时间敏感网络时隙感知循环排队转发流量整形机制

doi: 10.11999/JEIT220530
基金项目: 国家重点研发计划(2020YFB1710900)
详细信息
    作者简介:

    蔡岳平:男,副教授,研究方向为泛在确定性网络

    任志文:男,硕士生,研究方向为时间敏感网络

    通讯作者:

    蔡岳平 caiyueping@cqu.edu.cn

  • 中图分类号: TN915

Traffic Shaping Mechanism Based on Time Slot-Aware Cyclic Queuing and Forwarding in Time-Sensitive Networking

Funds: The National Key Research and Development Program of China (2020YFB1710900)
  • 摘要: 时间敏感网络是智能工厂内网的核心技术之一。智能工厂内存在多种需求各异的业务流。为保证关键业务流的性能,同时提升网络带宽利用率,该文提出一种时隙感知循环排队转发流量整形机制(TSA-CQF)。TSA-CQF通过将低优先级流量插入CQF奇偶队列中剩余可用时隙中传输提高带宽利用率。TSA-CQF机制包括低优先级流量的时隙感知插入和全局流量规划两个部分。低优先级流量的时隙感知插入是在CQF队列出队时,通过感知奇偶队列剩余时隙的大小,将低优先级流量插入到奇偶队列的剩余时隙进行传输。将全局流量规划建模为多条件约束目标优化问题,通过模拟退火算法求解,完成全局流量的调度,提高可调度流数目,进一步提高资源利用率。仿真结果表明,在混合流量条件下TSA-CQF比传统CQF机制平均提高了带宽利用率11.29%。与传统的CQF相比,TSA-CQF在牺牲一定调度策略生成时间的前提下,能明显提高带宽利用率并且降低最坏端到端时延。
  • 图  1  周期流量在某一端队列大量聚集

    图  2  固定时隙导致的带宽浪费

    图  3  TSA-CQF机制交换机模型

    图  4  固定时隙中可供调度的时隙

    图  5  TSA-CQF方案步骤

    图  6  SA-TSA算法流程

    图  7  仿真拓扑图

    图  8  不同网络负载下时敏流量端到端最坏时延

    图  9  不同流量占比对时敏流量最坏时延的影响

    图  10  不同网络负载下带宽利用率

    图  11  网络负载与流调度结果生成时间的关系

    表  1  约束参数说明

    参数描述
    $S$流的集合
    ${S_{[a,b]}}$流从发出节点a到接收节点b
    ${T_{{s_i}}}$最坏端到端时延
    ${L_{{s_i}}}$数据大小(以字节为单位)
    ${C_{{s_i}}}$流的周期
    ${f_{[a,b]}}$流中的帧从节点a到节点b
    ${f_{[a,b]}}{\text{ }} \cdot {\text{ }}\phi $流从节点ab的帧映射到时钟上的偏移量
    ${f_{[a,b]}}{\text{ }} \cdot {\text{ }}T$流从节点ab的帧映射到时钟上的周期
    ${f_{[a,b]}}{\text{ }} \cdot {\text{ }}L$流从节点ab的帧映射到时钟上传输大小
    ${F_{[{\text{a}},b]}}$流${S_{[a,b]}}$和帧${f_{[a,b]}}$的集合
    下载: 导出CSV
    算法1 SA-TSA 算法
     输入:G //网络拓扑
        F //流资源设置
        Q //队列资源设置
        Ri //流约束设置,i∈[1,5]
     输出:Foffset //流偏移量
     Fcur←{G,F,R}_init; //通过输入初始化当前解
      for (i=0;i<N;i++) //循环每一个流
       for (j=1;j<=5;j++) //循环每一个约束条件
        if Fi contain Rj //判断是否满足约束条件
        Qcur←Qfresh; //满足则更新可用资源数
          Continue;
        else
       while Fi contain Rj //不满足则进行偏移循环
        Fcur←F do offset;
       end while;
        end if
       end for
      end for
      while numcur <numitera AND Fi contain Ri //迭代
      Fnew←SA random() compute; //扰动产生新解
       if Fnew better than Fcur //对最优解进行更新
         Fcur =Fnew ;
        end if
       numcur++; //当前迭代次数加1
      end while
      return Fcur; //完成迭代,输出最优解
    下载: 导出CSV

    表  2  仿真参数

    参数分布取值
    链路带宽(Mbit/s)1 000
    网络负载[0.1,1]
    帧数量5×104
    帧大小(Byte)均匀分布[64,500]
    帧到达过程泊松分布500
    奇偶时隙大小(µs)250
    队列长度(MByte)1
    下载: 导出CSV
  • [1] NIKISHIN K and KONNOV N. Schedule time-triggered ethernet[C]. 2020 International Conference on Engineering Management of Communication and Technology, Vienna, Austria, 2020: 1–5.
    [2] LI Ziyang, ZHANG Yiming, ZHAO Yunxiang, et al. Efficient semantic-aware coflow scheduling for data-parallel jobs[C]. 2016 IEEE International Conference on Cluster Computing, Taipei, China, 2016: 154–155.
    [3] LI Ziyang, ZHANG Yiming, ZHAO Yunxiang, et al. Best effort task scheduling for data parallel jobs[C]. 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 555–556.
    [4] FINN N. Introduction to time-sensitive networking[J]. IEEE Communications Standards Magazine, 2018, 2(2): 22–28. doi: 10.1109/MCOMSTD.2018.1700076
    [5] SAHOO S, BAO Ninghai, BIGO S, et al. Deterministic dynamic network-based just-in-time delivery for distributed edge computing[C]. 2020 European Conference on Optical Communications, Brussels, Belgium, 2020: 1–4.
    [6] IEEE. IEEE std 802.1QchTM-2017 IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment 29: Cyclic queuing and forwarding[S]. New York: IEEE, 2017.
    [7] IEEE. IEEE Std 802.1QbvTM-2015. IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment 25: Enhancements for scheduled traffic[S]. New York: IEEE, 2016.
    [8] GARDINER E. The Avnu alliance theory of operation for TSN-enabled industrial systems[J]. IEEE Communications Standards Magazine, 2018, 2(1): 5. doi: 10.1109/MCOMSTD.2018.8334911
    [9] NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-Low Latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88–145.
    [10] MESSENGER J L. Time-sensitive networking: An introduction[J]. IEEE Communications Standards Magazine, 2018, 2(2): 29–33. doi: 10.1109/MCOMSTD.2018.1700047
    [11] BIGO S, BENZAOUI N, CHRISTODOULOPOULOS K, et al. Dynamic deterministic digital infrastructure for time-sensitive applications in factory floors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 6000314. doi: 10.1109/JSTQE.2021.3093281
    [12] FINN N, LE BOUDEC J Y, MOHAMMADPOUR E, et al. DetNet bounded latency[EB/OL]. https://datatracker.ietf.org/doc/draft-ietf-detnet-bounded-latency/, 2022.
    [13] SEAMAN M. Paternoster policing and scheduling[EB/OL]. https://grouper.ieee.org/groups/802/1/files/public/docs2017/cr-seaman-paternoster-policing-scheduling-0317-v03.pdf, 2017.
    [14] YAN Jinli, WEI Quan, JIANG Xuyan, et al. Injection time planning: Making CQF practical in time-sensitive networking[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 616–625.
    [15] HUANG Yudong, WANG Shuo, WU Binwei, et al. TACQ: Enabling zero-jitter for cyclic-queuing and forwarding in time-sensitive networks[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
    [16] WANG Guangjun, XU Caifeng, and LIU Gang. The transient electromagnetic inversion based on the simplex-simulated annealing algorithm[C]. The 37th Chinese Control Conference, Wuhan, China, 2018: 4321–4324.
    [17] 谢维, 关嘉欣, 周游, 等. 基于改进模拟退火算法的登机口分配问题[J]. 计算机系统应用, 2021, 30(5): 157–163. doi: 10.15888/j.cnki.csa.007903

    XIE Wei, GUAN Jiaxin, ZHOU You, et al. Gate distribution problem based on improved simulated annealing algorithm[J]. Computer Systems &Applications, 2021, 30(5): 157–163. doi: 10.15888/j.cnki.csa.007903
    [18] YERA Y G, LILLO R E, NIELSEN B F, et al. A bivariate two-state Markov modulated Poisson process for failure modeling[J]. Reliability Engineering & System Safety, 2021, 208: 107318. doi: 10.1016/j.ress.2020.107318
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  590
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-10-25
  • 网络出版日期:  2022-11-18
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回