高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子学的微波移频方法研究

高永胜 谭佳俊 王瑞琼

高永胜, 谭佳俊, 王瑞琼. 基于光子学的微波移频方法研究[J]. 电子与信息学报, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503
引用本文: 高永胜, 谭佳俊, 王瑞琼. 基于光子学的微波移频方法研究[J]. 电子与信息学报, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503
GAO Yongsheng, TAN Jiajun, WANG Ruiqiong. Research on Microwave Frequency Shift Method Based on Photonics[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503
Citation: GAO Yongsheng, TAN Jiajun, WANG Ruiqiong. Research on Microwave Frequency Shift Method Based on Photonics[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503

基于光子学的微波移频方法研究

doi: 10.11999/JEIT220503
基金项目: 国家自然科学基金(61701412),全国博士后创新人才支持计划(BX201700197),中国博士后科学基金(2017M623238),陕西省重点研发计划(2021GY-096)
详细信息
    作者简介:

    高永胜:男,副教授、硕士生导师,主要研究方向为微波光子信号处理、光载射频通信、微波光子卫星通信、微波光子雷达等

    谭佳俊:男,硕士生,研究方向为微波光子信号处理、微波光子雷达等

    王瑞琼:女,博士生,主要研究方向为微波光子信号处理、光载射频通信等

    通讯作者:

    高永胜 ysgao@nwpu.edu.cn

  • 中图分类号: TN29

Research on Microwave Frequency Shift Method Based on Photonics

Funds: The National Natural Science Foundation of China (61701412), The Postdoctoral Innovation Talents Support Program (BX201700197), China Postdoctoral Science Foundation (2017M623238), The Key Research and Development Program of Shaanxi Province(2021GY-096)
  • 摘要: 微波移频技术(MFS)广泛应用于电子对抗、卫星通信、频控阵雷达等系统。基于光子学的微波移频方法具有带宽大、频谱纯净等优点。为了探索基于光子学的微波移频性能,该文对比研究了基于声光移频(AOFS)、锯齿波相位调制(SPM)和I/Q调制3种微波光子移频方法,阐释了3种方法的原理,搭建了对应的原理验证系统,对不同的移频方法进行了实验与分析。结果表明,3种移频方法都可以实现精准的微波信号移频,实现大于30 dB的杂散抑制比。但3种移频方法也存在各自的局限性:AOFS的工作频率、带宽和移频方向较为固定,可调谐性低;SPM移频与I/Q调制对输入驱动信号要求严格,系统稳定性较差。
  • 图  1  AOFS结构图、工作模式及实物图[25]

    图  2  基于AOFS的微波信号移频结构图

    图  3  SPM原理图及驱动信号数学模型

    图  4  基于SPM的微波信号移频结构图

    图  5  基于I/Q调制的微波光子移频

    图  6  实验光谱图

    图  7  PD输出的上下移频500 MHz信号频谱图

    图  8  中心频率为15 GHz的频移信号频谱

    图  9  SPM方法得到的500 kHz上下频移信号频谱

    图  10  不同频率下移频性能对比

    图  11  移频后杂散抑制比随占空比的变化

    图  12  不同锯齿波幅度下的移频信号频谱

    图  13  非理想锯齿波幅度下的移频信号频谱

    图  14  I/Q调制实验光谱图

    图  15  15 GHz信号移频-25 MHz到+25 MHz后的频谱

    图  16  不同幅相不平衡条件下的边带杂散抑制比

    表  1  实验器材型号和参数表

    器件名称型号器件名称型号
    激光器KG-DFB-40-C32微波信号源Agilent, E8256D
    MZMAZ-DV5-65-PFA-PFA-SSZ818OBPFEXFO XTM-50
    AOFSIPF-500-50-1550-2FPPDFinisar BPDV2150R
    PM
    功率放大器
    PM-DV5-40-PFA-PFA-LV
    CMP-0.122G-3329-K
    直流源
    光谱仪
    Gwinstek GDP-4303S
    BOSA BOSA400C+L
    PDM-DPMZMFujitsu FTM7977HQA频谱仪R&S FSQ40
    函数发生器Junctek PSG 9060
    下载: 导出CSV

    表  2  3种移频方式对比

    移频方式工作频率范围(GHz)瞬时带宽移频量杂散抑制比(dB)稳定性可调谐性
    AOFS8~65GHz量级<1>45稳定
    SPM8~65GHz量级取决于DDS或DAC20~35较差
    I/Q调制8~40GHz量级DC~4030~40
    下载: 导出CSV
  • [1] PENG Zhang. Realization of DRFM radar target simulator based on general instruments[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–8.
    [2] 曹康, 姜成昊, 朱精果, 等. 激光多普勒移频特性研究[J]. 红外与激光工程, 2021, 50(11): 20210116. doi: 10.3788/IRLA20210116

    CAO Kang, JIANG Chenghao, ZHU Jingguo, et al. Frequency shift characteristics of laser Doppler effect[J]. Infrared and Laser Engineering, 2021, 50(11): 20210116. doi: 10.3788/IRLA20210116
    [3] ENGELHARDT M, PFEIFFER F, and BIEBL E. A high bandwidth radar target simulator for automotive radar sensors[C]. 2016 European Radar Conference, London, UK, 2016: 245–248.
    [4] JIANG Wei, ZHAO Shanghong, TAN Qinggui, et al. Wideband photonic microwave channelization and image-reject down-conversion[J]. Optics Communications, 2019, 445: 41–49. doi: 10.1016/j.optcom.2019.04.013
    [5] 伍振海, 刘静娴, 李晓辉. 基于微波光子变频的发射频率分集阵列实现装置及方法[P]. 中国专利, 202010434080.7, 2020.

    WU Zhenhai, LIU Jingxian, and LI Xiaohui. Device and method for realizing transmit frequency diversity array based on microwave photonic frequency conversion [P]. China Patent, 202010434080.7, 2020.
    [6] HAO Tengfei, CEN Qizhuang, DAI Yitang, et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 2018, 9(1): 1839. doi: 10.1038/s41467-018-04240-6
    [7] 杨利超, 邢孟道, 孙光才, 等. 一种微波光子雷达ISAR成像新方法[J]. 电子与信息学报, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661

    YANG Lichao, XING Mengdao, SUN Guangcai, et al. A novel ISAR imaging algorithm for microwave photonics radar[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661
    [8] 高永胜. 微波光子混频技术[M]. 北京: 科学出版社, 2021.

    GAO Yongsheng. Photonics Microwave Mixing Technology[M]. Beijing: Science Press, 2021.
    [9] GREENHALGH P A, FOORD A P, and DA VIES P A. All-fibre frequency shifter using piezoceramic SAW device[J]. Electronics Letters, 1989, 25(18): 1206–1207. doi: 10.1049/el:19890809
    [10] DING Zhidan, YANG Fei, ZHAO Jiejun, et al. Photonic high-fidelity storage and Doppler frequency shift of broadband RF pulse signals[J]. Optics Express, 2019, 27(23): 34359–34369. doi: 10.1364/OE.27.034359
    [11] 吴彭生, 吴冉, 魏正武, 等. 基于声光调制的微波信号多普勒移频技术[J]. 压电与声光, 2020, 42(3): 296–298.

    WU Pengsheng, WU Ran, WEI Zhengwu, et al. A microwave doppler frequency shift technology based on acousto-optic modulation[J]. Piezoelectrics &Acoustooptics, 2020, 42(3): 296–298.
    [12] PAGÁN V R and MURPHY T E. Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering[J]. Optics Letters, 2015, 40(11): 2481–2484. doi: 10.1364/OL.40.002481
    [13] EMAMI H, SARKHOSH N, BUI L A, et al. Wideband RF photonic in-phase and quadrature-phase generation[J]. Optics Letters, 2008, 33(2): 98–100. doi: 10.1364/OL.33.000098
    [14] ZHU Dan, HU Xiaopeng, CHEN Wenjuan, et al. Photonics-enabled simultaneous self-interference cancellation and image-reject mixing[J]. Optics Letters, 2019, 44(22): 5541–5544. doi: 10.1364/OL.44.005541
    [15] LI Jianqiang, XIAO Jia, SONG Xiaoxiong, et al. Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (Invited Paper)[J]. Chinese Optics Letters, 2017, 15(1): 010014. doi: 10.3788/COL201715.010014
    [16] JIANG Tianwei, WU Ruihuan, YU Song, et al. Microwave photonic phase-tunable mixer[J]. Optics Express, 2017, 25(4): 4519–4527. doi: 10.1364/OE.25.004519
    [17] LI Peixuan, PAN Wei, ZOU Xihua, et al. Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 9100208. doi: 10.1109/JQE.2017.2704929
    [18] LIN Tao, ZHAO Shanghong, ZHU Zihang, et al. Microwave photonic image rejection mixer based on a DP-QPSK modulator[J]. Journal of Modern Optics, 2017, 64(17): 1699–1707. doi: 10.1080/09500340.2017.1310321
    [19] HUANG Long, TANG Zhenzhou, XIANG Peng, et al. Photonic generation of equivalent single sideband vector signals for RoF systems[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2633–2636. doi: 10.1109/LPT.2016.2612240
    [20] GAO Yongsheng, WEN Aijun, JIANG Wei, et al. Wideband photonic microwave SSB up-converter and I/Q modulator[J]. Journal of Lightwave Technology, 2017, 35(18): 4023–4032. doi: 10.1109/JLT.2017.2726532
    [21] GAO Yongsheng, WANG Xinyuan, WANG Wuying, et al. Wideband and low-spur Doppler simulator based on photonic microwave I/Q up-converter[C]. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2020: 1–3.
    [22] JOHNSON L M and COX C H. Serrodyne optical frequency translation with high sideband suppression[J]. Journal of Lightwave Technology, 1988, 6(1): 109–112. doi: 10.1109/50.3974
    [23] POBEREZHSKIY I Y, BORTNIK B, CHOU J, et al. Serrodyne frequency translation of continuous optical signals using ultrawide-band electrical sawtooth waveforms[J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1533–1539. doi: 10.1109/JQE.2005.858467
    [24] HUANG Chongjia and CHAN E H W. Photonics-based serrodyne microwave frequency translator with large spurious suppression and phase shifting capability[J]. Journal of Lightwave Technology, 2021, 39(7): 2052–2058. doi: 10.1109/JLT.2020.3046280
    [25] Brimrose. Acousto-optic frequency shifter[EB/OL]. https://www.brimrose.com/free-space-ao/acousto-optic-frequency-shifters, 2021.
    [26] 樊星, 张伟, 郭光辉, 等. 晶体与电极位置失配对声光移频器性能的影响研究[J]. 光学学报, 2021, 41(22): 2223001. doi: 10.3788/AOS202141.2223001

    FAN Xing, ZHANG Wei, GUO Guanghui, et al. Impact of position mismatch between crystal and electrode on performance of acousto-optic frequency shifter[J]. Acta Optica Sinica, 2021, 41(22): 2223001. doi: 10.3788/AOS202141.2223001
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  689
  • HTML全文浏览量:  661
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-09-06
  • 录用日期:  2022-09-06
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回