高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多项式基的Camellia算法S盒硬件优化

李艳俊 张伟国 葛耀东 王克

李艳俊, 张伟国, 葛耀东, 王克. 基于多项式基的Camellia算法S盒硬件优化[J]. 电子与信息学报, 2023, 45(3): 921-928. doi: 10.11999/JEIT220499
引用本文: 李艳俊, 张伟国, 葛耀东, 王克. 基于多项式基的Camellia算法S盒硬件优化[J]. 电子与信息学报, 2023, 45(3): 921-928. doi: 10.11999/JEIT220499
LI Yanjun, ZHANG Weiguo, GE Yaodong, WANG Ke. Hardware Optimization of S-box of Camellia Algorithm Based on Polynomial Basis[J]. Journal of Electronics & Information Technology, 2023, 45(3): 921-928. doi: 10.11999/JEIT220499
Citation: LI Yanjun, ZHANG Weiguo, GE Yaodong, WANG Ke. Hardware Optimization of S-box of Camellia Algorithm Based on Polynomial Basis[J]. Journal of Electronics & Information Technology, 2023, 45(3): 921-928. doi: 10.11999/JEIT220499

基于多项式基的Camellia算法S盒硬件优化

doi: 10.11999/JEIT220499
基金项目: 广西密码学与信息安全重点实验室开放课题(GCIS201912),北京高校“高精尖”学科建设项目(20210101Z0401)
详细信息
    作者简介:

    李艳俊:女,副教授,研究方向为分组密码的设计与分析

    张伟国:男,硕士生,研究方向为S盒的设计与分析

    葛耀东:男,硕士生,研究方向为分组密码量子安全性分析

    王克:男,讲师,研究方向为格密码、后量子密码学和公钥密码学

    通讯作者:

    张伟国 18291965029@163.com

  • 中图分类号: TN918.4

Hardware Optimization of S-box of Camellia Algorithm Based on Polynomial Basis

Funds: The Open Project of Guangxi Key Labtorary of Cryptography and Information Security (GCIS201912), The Advanced Discipline Construction Project of Beijing Universities (20210101Z0401)
  • 摘要: 该文提出一种基于不可约多项式的Camellia算法S盒的代数表达式,并给出了该表达式8种不同的同构形式。然后,结合Camellia算法S盒的特点,基于理论证明给出一种基于多项式基的S盒优化方案,此方法省去了表达式中的部分线性操作。相对于同一种限定门的方案,在中芯国际(SMIC)130 nm工艺库中,该文方案减少了9.12%的电路面积;在SMIC 65 nm工艺库中,该文方案减少了8.31%的电路面积。最后,根据Camellia算法S盒设计中的计算冗余,给出了2类完全等价的有限域的表述形式,此等价形式将对Camellia算法S盒的优化产生积极影响。
  • 图  1  ${\rm{ FL}}$${{\rm{FL}}^{ - 1}}$

    图  2  Camellia算法流程图

    图  3  Camellia算法轮函数F

    图  4  Camellia算法S盒硬件优化流程

    表  1  正规基构造细节

    不可约多项式$ \alpha $$\beta $
    $p1(x) = {x^8} + {x^6} + {x^5} + {x^3} + 1$1082
    1083
    184
    185
    $p2(x) = {x^4} + x + 1$10916
    10917
    19104
    19105
    下载: 导出CSV

    表  2  有限域构造参数

    复合域复合域不可约多项式
    ${\rm GF}({2^{(n/2)}})$${\rm GF}(2)[x]/{\rm{p}}2(x)$${\rm{p}}2(x)$
    ${\rm GF}({({2^{(n/2)}})^2})$${\rm GF}({2^{(n/2)} })[x]/{\rm{p}}3(x)$${\rm{p}}3(x)={x}^{2}+Ax+B;A,B\in {\rm GF}({2}^{(n/2)})$
    下载: 导出CSV

    表  3  GF((24)2)构造参数

    复合域复合域不可约多项式
    ${\rm GF}({2^4})$${\rm GF}(2)[x]/{\rm{p}}2(x)$${\rm{p}}2(x) = {x^4} + x + 1$
    ${\rm GF}({({2^4})^2})$${\rm GF}({2^{(n/2)} })[x]/{\rm{p}}3(x)$${\rm{p}}3(x) = {x^2} + 0001x + 1001$
    下载: 导出CSV

    表  4  两种域的参数

    不可约多项式$i(\alpha=\beta^i)$$\alpha $${\beta }$AB
    $ {\alpha ^4} + {\alpha ^3} = 1 $17, 34, 68, 136106, 6, 20, 121104, 10512, 14, 9, 4
    121, 106, 6, 2016, 17
    20, 121, 106, 64, 5
    6, 20, 121, 1062, 3
    $ {\alpha ^4} + \alpha = 1 $119, 187, 221, 238109, 18, 108, 19104, 105113, 14, 11, 9
    18, 108, 19, 10916, 17
    108, 19, 109, 184, 5
    19, 109, 18, 1082, 3
    $ {\alpha ^4} + {\alpha ^3} + {\alpha ^2} + \alpha = 1 $51, 102, 153, 20421, 120, 7, 107104, 105114, 5, 9, 3
    7, 21, 107, 12016, 17
    107, 7, 120, 214, 5
    120, 107, 21, 72, 3
    下载: 导出CSV

    表  5  3种算法S盒代数安全性对比

    算法差分均匀度分线性度不动点个数代数次数代数项数
    AES411207(110,112,114,131,136,145,133,132)
    SM4411217(124,139,124,126,123,128,130,134)
    Camellia411207(127,132,126,135,129,133,129,126)
    下载: 导出CSV

    表  6  逻辑门参数(nm)

    NOTANDNANDORXORXORMUXNANDN
    SMIC1300.671.331.001.332.332.332.671.33
    SMIC650.751.501.001.502.252.252.251.50
    下载: 导出CSV

    表  7  逻辑门参数

    算法逻辑门数量SMIC130 (nm)SMIC65 (nm)
    NOTANDNANDORNORXORMUXNANDN
    Camellia本文方案9530607800266.24270.75
    方案1[16]93500011300315.87313.50
    方案2[16]9580009400302.19304.50
    文献[17]9580008900290.54293.25
    方案1[18]1027056342193.00186.50
    方案2[18]1027056360195.67188.00
    AES文献[19]4340009100259.93258.75
    SM4文献[20]14340008500252.65252.75
    下载: 导出CSV
  • [1] BOGDANOV A, KNUDSEN L R, LEANDER G, et al. PRESENT: An ultra-lightweight block cipher[C]. Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10–13, 2007, Proceedings, Berlin, Heidelberg, Germany, 2007.
    [2] WU Wenling and ZHANG Lei. LBlock: A lightweight block cipher[C]. The 9th International Conference on Applied Cryptography and Network Security, Berlin, Heidelberg, Germany, 2011.
    [3] CHEN Shiyao, FAN Yanhong, SUN Ling, et al. SAND: An AND-RX Feistel lightweight block cipher supporting S-box-based security evaluations[J]. Designs, Codes and Cryptography, 2021, 90(1): 155–198. doi: 10.1007/s10623-021-00970-9
    [4] FENG Jingya and LI Lang. SCENERY: A lightweight block cipher based on Feistel structure[J]. Frontiers of Computer Science, 2022, 16(3): 163813. doi: 10.1007/S11704-020-0115-9
    [5] GUO Ying, LI Lang, and LIU Botao. Shadow: A lightweight block cipher for IoT nodes[J]. IEEE Internet of Things Journal, 2021, 8(16): 13014–13023. doi: 10.1109/JIOT.2021.3064203
    [6] AOKI K, ICHIKAWA T, KANDA M, et al. Camellia: A 128-bit block cipher suitable for multiple platforms-design and analysis[C]. 7th International Workshop on Selected Areas in Cryptography, Berlin Heidelberg, Germany, 2000.
    [7] SATOH A and MORIOKA S. Hardware-focused performance comparison for the standard block ciphers AES, camellia, and triple-DES[C]. 6th International Conference on Information Security, Berlin, Heidelberg, Germany, 2003: 252–266.
    [8] ZOU Jian, WEI Zihao, SUN Siwei, et al. Some efficient quantum circuit implementations of Camellia[J]. Quantum Information Processing, 2022, 21(4): 131. doi: 10.1007/S11128-022-03477-X
    [9] WEI Z, SUN S, HU L, et al. Scrutinizing the tower field implementation of the GF(2^8) inverter--with applications to AES, Camellia, and SM4[J]. Cryptology ePrint Archive, 2019.
    [10] CI C W, NAZIRI S Z M, ISMAIL R C, et al. Crypto-core design using camellia cipher[J]. Journal of Physics:Conference Series, 2021, 1755(1): 012019. doi: 10.1088/1742-6596/1755/1/012019
    [11] RASHIDI B. Compact and efficient structure of 8-bit S-box for lightweight cryptography[J]. Integration, 2021, 76: 172–182. doi: 10.1016/j.vlsi.2020.10.009
    [12] DAEMEN J and RIJMEN V. The Rijndael block cipher: AES proposal[C]. First Candidate Conference (AeS1), 1999: 343–348.
    [13] LIU Fen, JI Wen, HU Lei, et al. Analysis of the SMS4 block cipher[C]. Information Security and Privacy, 12th Australasian Conference, ACISP 2007, Townsville, Australia, July 2–4, 2007, Proceedings, Berlin, Heidelberg, Germany, 2007.
    [14] SATOH A, MORIOKA S, TAKANO K, et al. A compact Rijndael hardware architecture with S-box optimization[C]. 7th International Conference on the Theory and Application of Cryptology and Information Security, Berlin, Heidelberg, Germany, 2001: 239–254.
    [15] MAXIMOV A and EKDAHL P. New circuit minimization techniques for smaller and faster AES SBoxes[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019: 91–125. doi: 10.46586/tches.v2019.i4.91-125
    [16] MARTÍNEZ-HERRERA A F, MEX-PERERA J C, and NOLAZCO-FLORES J A. Some representations of the S-Box of Camellia in GF (((22)2)2)[C]. 11th International Conference on Cryptology and Network Security, Berlin, Heidelberg, Germany, 2012: 296–309.
    [17] SATOH A and MORIOKA S. Unified hardware architecture for 128-bit block ciphers AES and Camellia[C]. 5th International Workshop on Cryptographic Hardware and Embedded Systems, Berlin, Heidelberg, Germany, 2003: 304–318.
    [18] 魏子豪, 张英杰, 胡磊, 等. Camellia算法S盒的紧凑硬件实现[J]. 密码学报, 2021, 8(5): 844–855. doi: 10.13868/j.cnki.jcr.000481

    WEI Zihao, ZHANG Yingjie, HU Lei, et al. A compact hardware implementation of S-Box for Camellia[J]. Journal of Cryptologic Research, 2021, 8(5): 844–855. doi: 10.13868/j.cnki.jcr.000481
    [19] BOYAR J, FIND M G, and PERALTA R. Small low-depth circuits for cryptographic applications[J]. Cryptography and Communications, 2019, 11(1): 109–127. doi: 10.1007/s12095-018-0296-3
    [20] 刘建. 两类密码组件的实现优化方法研究[D]. [硕士论文], 战略支援部队信息工程大学, 2019.

    LIU Jian. Optimization on the implementation of two types of cryptographic components [D]. [Master dissertation], PLA Strategic Support Force Information Engineering University, 2019.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  238
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回