高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间目标散射结构极化旋转域辨识

崔兴超 李郝亮 付耀文 陈思伟 粟毅

崔兴超, 李郝亮, 付耀文, 陈思伟, 粟毅. 空间目标散射结构极化旋转域辨识[J]. 电子与信息学报, 2023, 45(6): 2105-2114. doi: 10.11999/JEIT220493
引用本文: 崔兴超, 李郝亮, 付耀文, 陈思伟, 粟毅. 空间目标散射结构极化旋转域辨识[J]. 电子与信息学报, 2023, 45(6): 2105-2114. doi: 10.11999/JEIT220493
CUI Xingchao, LI Haoliang, FU Yaowen, CHEN Siwei, SU Yi. Scattering Structure Recognition of Space Target in Polarimetric Rotation Domain[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2105-2114. doi: 10.11999/JEIT220493
Citation: CUI Xingchao, LI Haoliang, FU Yaowen, CHEN Siwei, SU Yi. Scattering Structure Recognition of Space Target in Polarimetric Rotation Domain[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2105-2114. doi: 10.11999/JEIT220493

空间目标散射结构极化旋转域辨识

doi: 10.11999/JEIT220493
基金项目: 国家自然科学基金(62122091),湖南省杰青项目基金(2020JJ2034)
详细信息
    作者简介:

    崔兴超:男,博士生,研究方向为极化雷达成像与目标识别

    李郝亮:男,博士生,研究方向为极化雷达成像与目标识别

    付耀文:男,研究员,博士生导师,研究方向为雷达信号处理、信息融合技术

    陈思伟:男,教授,硕士生导师,研究方向为极化雷达成像、目标识别、电子对抗

    粟毅:男,教授,博士生导师,研究方向为新体制雷达系统、雷达信号处理

    通讯作者:

    陈思伟 chenswnudt@163.com

  • 中图分类号: TN957.52

Scattering Structure Recognition of Space Target in Polarimetric Rotation Domain

Funds: The National Natural Science Foundation of China (62122091), The Natural Science Foundation of Hunan Province (2020JJ2034)
  • 摘要: 极化逆合成孔径雷达(ISAR)具备全极化测量和高分辨成像能力,已成为空间态势感知的重要传感器。作为典型的人造目标,空间目标散射特性敏感于目标姿态和雷达视线方向的相对夹角。这种散射多样性给极化ISAR数据解译带来困难,也蕴藏着丰富的极化散射信息。为提高空间目标散射结构辨识性能,该文深入挖掘绕雷达视线的极化旋转域信息,提出一种空间目标散射结构极化旋转域辨识方法,共包含3个步骤。首先,对极化ISAR数据开展绕雷达视线的极化旋转域分析,导出极化相关方向图特征。其次,分析基本散射体的极化相关方向图特性,构造极化特征编码矢量。最后,基于极化特征编码矢量距离度量实现散射结构极化辨识。围绕太阳能帆板、反射面天线等空间目标典型部件开展仿真实验研究,所提方法相较于传统的Cameron分解方法性能更优,鲁棒性更高。
  • 图  1  极化旋转域散射结构辨识算法流程图

    图  2  仿真模型

    图  3  Ku波段30°俯仰角、15°方位角太阳能帆板解译结果

    图  4  Ku波段30°俯仰角、15°方位角太阳能帆板部分强散射点特性

    图  5  X波段40°俯仰角、45°方位角反射面天线解译结果

    图  6  X波段40°俯仰角、45°方位角反射面天线部分强散射点特性

    表  1  极化相关方向图特征表达式及物理意义

    极化相关方向图特征表达式物理意义
    原始极化相关特征值${\tilde \gamma _{ \text{-}{\text{org} } } } = \left| {\tilde \gamma \left( 0 \right)} \right|$原始成像几何下的去相关效应
    极化相关度${\tilde \gamma _{ \text{-}{\text{mean} } } } = {\text{mean} }\left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化旋转域的平均去相关效应
    极化相关起伏度${\tilde \gamma _{ \text{-}{\text{std} } } } = {\text{std} }\left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化相关值在极化旋转域中的起伏程度
    极化相关特征最大值${\tilde \gamma _{ \text{-} \max } } = \max \left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化相关值上界
    极化相关特征最小值${\tilde \gamma _{ \text{-} \min } } = \min \left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化相关值下界
    极化相关对比度${\tilde \gamma _{\text{-}{\text{contrast} } } } = {\tilde \gamma _{ \text{-} \max } } - {\tilde \gamma _{ \text{-} \min } }$极化相关值极差
    极化相关特征反熵${\tilde \gamma _{ \text{-}{\text{A} } } } = \left( { { {\tilde \gamma }_{ \text{-} \max } } - { {\tilde \gamma }_{ \text{-} \min } } } \right)/\left( { { {\tilde \gamma }_{\text{-} \max } } + { {\tilde \gamma }_{\text{-} \min } } } \right)$ 极化相关值相对极差
    最小化旋转角${\theta _{\tilde \gamma \text{-} \min } } = \arg {\text{ } }\min \left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化相关值最小时对应旋转角
    最大化旋转角${\theta _{\tilde \gamma \text{-} \min } } = \arg {\text{ } }\max \left\{ {\left| {\tilde \gamma \left( \theta \right)} \right|} \right\}$极化相关值最大时对应旋转角
    极化相关宽度$\left\{ \begin{aligned}& { { {\tilde \gamma }_{ \text{-}{\text{bw0} }{\text{.95} } } } = {\theta _1} - {\theta _2} } \\ & {\tilde \gamma \left( { {\theta _1} } \right) = \tilde \gamma \left( { {\theta _2} } \right) = 0.95 \cdot { {\tilde \gamma }_{ {\text{-max} } } } } \end{aligned} \right.$目标对取向依赖性效应的敏感程度
    下载: 导出CSV

    表  2  7种典型散射体极化散射矩阵及极化相关方向图

    平板 二面角偶极子圆柱窄二面角1/4波器件螺旋散射体
    极化散射矩阵$\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{ - 1} \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c} } 1&0 \\ 0&{\dfrac{1}{2} } \end{array} } \right]$$\left[ {\begin{array}{*{20}{c} } 1&0 \\ 0&{ - \dfrac{1}{2} } \end{array} } \right]$$\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{\text{j}} \end{array}} \right]$$\dfrac{1}{2}\left[ {\begin{array}{*{20}{c} } 1&{\text{j} } \\ {\text{j} }&{ - 1} \end{array} } \right]$
    $\left| { { {\tilde \gamma }_{ {\text{HH-HV} } } }\left( \theta \right)} \right|$
    $\left| { { {\tilde \gamma }_{ {\text{HH-VV} } } }\left( \theta \right)} \right|$
    $\left| { { {\tilde \gamma }_{({\text{HH+VV} }){\text{-(HH-VV)} } } }\left( \theta \right)} \right|$
    $\left| { { {\tilde \gamma }_{({\text{HH-VV} }){\text{-(HV)} } } }\left( \theta \right)} \right|$
    下载: 导出CSV

    表  3  电磁仿真参数

    波段载频(GHz)距离向分辨率(m)成像孔径(°)方位向分辨率(m)方位角(°)俯仰角(°)
    X9.5~10.50.1505.730.150[0:15:90][30 40]
    Ku15.5~17.50.0756.940.075[0:15:90][30 40]
    下载: 导出CSV

    表  4  X波段太阳能帆板结构辨识结果中各散射结构占比(%)

    观测视角Cameron分解极化旋转域辨识
    俯仰角方位角平板圆柱1/4波器件其它平板圆柱1/4波器件其它
    30°73.3326.670073.3326.6700
    15°086.6713.3300100.0000
    30°23.3376.670076.6713.3310.000
    45°100.0000096.67003.33
    60°100.00000100.00000
    75°23.3373.333.33073.333.3323.330
    90°030.0070.000083.336.6710.00
    40°90.0010.000090.0010.0000
    15°100.00000100.00000
    30°0100.00000100.0000
    45°73.3326.670046.6753.3300
    60°0100.00000100.0000
    75°0100.00000100.0000
    90°63.3320.0013.333.3363.3310.0023.333.33
    下载: 导出CSV

    表  5  Ku波段太阳能帆板结构辨识结果中各散射结构占比(%)

    观测视角Cameron分解极化旋转域辨识
    俯仰角方位角平板圆柱1/4波器件其它平板圆柱偶极子其它
    30°028.0072.000030.0070.000
    15°018.0082.000018.0082.000
    30°094.006.0000100.0000
    45°014.0062.0024.00024.0022.0054.00
    60°2.0050.0046.002.002.0066.0018.0014.00
    75°028.0072.000050.0050.000
    90°40.0060.000098.00002.00
    40°54.0040.006.00056.0042.0002.00
    15°048.0052.000066.0034.000
    30°8.0092.000062.0038.0000
    45°2.0012.0064.0022.002.008.0034.0056.00
    60°26.0052.0022.00020.0024.002.0054.00
    75°0100.00000100.0000
    90°58.0042.000058.0042.0000
    下载: 导出CSV

    表  6  X波段反射面天线结构辨识结果中各散射结构占比(%)

    观测视角Cameron分解极化旋转域辨识
    俯仰角方位角平板圆柱1/4波器件其它平板圆柱1/4波器件其它
    30°85.0010.0005.0085.0010.005.000
    15°80.0020.000080.0020.0000
    30°95.005.000095.005.0000
    45°100.00000100.00000
    60°80.0020.000085.0015.0000
    75°90.0010.000090.0010.0000
    90°85.0010.0005.0085.0010.005.000
    40°35.0040.0020.005.0050.0015.0030.005.00
    15°75.0025.000090.0010.0000
    30°65.0025.005.005.0080.00015.005.00
    45°45.0050.005.00080.0020.0000
    60°80.0015.005.00090.0005.005.00
    75°75.0025.000090.0010.0000
    90°35.0040.0015.0010.0050.0015.0030.005.00
    下载: 导出CSV

    表  7  Ku波段反射面天线结构辨识结果中各散射结构占比(%)

    观测视角Cameron分解极化旋转域辨识
    俯仰角方位角平板圆柱1/4波器件其它平板圆柱1/4波器件其它
    30°56.6736.676.67066.6720.0013.330
    15°56.6736.676.67066.6726.676.670
    30°70.0023.333.333.3373.3316.676.673.33
    45°56.6736.673.333.3370.0020.003.336.67
    60°66.6730.0003.3370.0026.6703.33
    75°63.3333.333.33073.3323.333.330
    90°56.6733.3310.00066.6720.0013.330
    40°46.6740.0013.33040.0056.6703.33
    15°56.6740.003.33060.0036.673.330
    30°60.0040.000066.6733.3300
    45°56.6740.003.33056.6736.673.333.33
    60°46.6750.003.33063.3333.333.330
    75°60.0036.673.33060.0040.0000
    90°46.6740.0013.33040.0056.6703.33
    下载: 导出CSV
  • [1] CHEN V C, MARTORELLA M, 胡明春, 孙俊, 译. 逆合成孔径雷达成像[M]. 北京: 国防工业出版社, 2020.

    CHEN V C, MARTORELLA M, HU Mingchun, SUN Jun. translation. Inverse Synthetic Aperture Radar Imaging[M]. Beijing: National Defense Industry Press, 2020.
    [2] FHR. Long-term analysis of the attitude motion of the defunct ENVISAT[EB/OL]. https://www.fhr.fraunhofer.de/en/businessunits/space/long-term-analysis-of-the-attitude-motion-of-the-defunct-satellite-ENVISAT.html, 2022.
    [3] FHR. Monitoring the re-entry of the chinese space station Tiangong-1 with TIRA[EB/OL]. https://www.fhr.fraunhofer.de/en/businessunits/space/monitoring-the-re-entry-of-the-chinese-space-station-tiangong-1-with-tira.html, 2022.
    [4] LIU Yang, LI Gang, TIAN Biao, et al. ISAR imaging at low SNR level based on polarimetric whitening filter[J]. SPIE 8917, 2013, 891703-1–891703-8.
    [5] 吴佳妮. 人造目标几何结构反演与极化雷达识别研究[D]. [博士论文], 国防科学技术大学, 2017.

    WU Jiani. Study on geometrical structure retrieval and polarization radar recognition of man-made targets[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
    [6] 田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060

    TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060
    [7] HURST M and MITTRA R. Scattering center analysis via Prony's method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986–988. doi: 10.1109/TAP.1987.1144210
    [8] POTTER L C, CHIANG Daming, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
    [9] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
    [10] JACKSON J A, RIGLING B D, and MOSES R L. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525–541. doi: 10.1109/TAES.2010.5461639
    [11] 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289–3297. doi: 10.11999/JEIT160992

    ZHANG Lamei, DUAN Baolong, and ZOU Bin. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3289–3297. doi: 10.11999/JEIT160992
    [12] CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127
    [13] KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525–1527. doi: 10.1049/el:19900979
    [14] CAMERON W L, YOUSSEF N N, and LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793–803. doi: 10.1109/36.499784
    [15] TOUZI R and CHARBONNEAU F. Characterization of target symmetric scattering using polarimetric SARs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2507–2516. doi: 10.1109/TGRS.2002.805070
    [16] 吴国庆, 陈思伟, 李永祯, 等. 人造目标散射结构的零极化辨识与应用[J]. 电波科学学报, 2022, 37(5): 733–742, 760.

    WU Guoqing, CHEN Siwei, LI Yongzhen, et al. Manmade targets scattering structure null-polarization recognition and application[J]. Chinese Journal of Radio Science, 2022, 37(5): 733–742, 760.
    [17] 段佳, 曹兰英, 吴亿锋. 基于属性散射中心的SAR成像方法[J]. 系统工程与电子技术, 2021, 43(10): 2782–2788. doi: 10.12305/j.issn.1001-506X.2021.10.10

    DUAN Jia, CAO Lanying, and WU Yifeng. Imaging algorithm for SAR based on attributed scattering center models[J]. Systems Engineering and Electronics, 2021, 43(10): 2782–2788. doi: 10.12305/j.issn.1001-506X.2021.10.10
    [18] DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/LGRS.2014.2320053
    [19] ARII M. Ship detection from full polarimetric SAR data at different incidence angles[C]. 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea (South), 2011: 1–4.
    [20] SAVILLE M A, JACKSON J A, and FULLER D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(1): 41–49. doi: 10.1109/MAES.2014.130057
    [21] CHEN Siwei. Polarimetric coherence pattern: A visualization and characterization tool for PolSAR data investigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 286–297. doi: 10.1109/TGRS.2017.2746662
    [22] 陈思伟, 李永祯, 王雪松, 等. 极化SAR目标散射旋转域解译理论与应用[J]. 雷达学报, 2017, 6(5): 442–455. doi: 10.12000/jr17033

    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Polarimetric SAR target scattering interpretation in rotation domain: Theory and application[J]. Journal of Radars, 2017, 6(5): 442–455. doi: 10.12000/jr17033
    [23] CUI Xingchao, TAO Chensong, SU Yi, et al. PolSAR ship detection based on polarimetric correlation pattern[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 471–475. doi: 10.1109/LGRS.2020.2976477
    [24] 陶臣嵩, 陈思伟, 李永祯, 等. 结合旋转域极化特征的极化SAR地物分类[J]. 雷达学报, 2017, 6(5): 524–532. doi: 10.12000/jr16131

    TAO Chensong, CHEN Siwei, LI Yongzhen, et al. Polarimetric SAR terrain classification using polarimetric features derived from rotation domain[J]. Journal of Radars, 2017, 6(5): 524–532. doi: 10.12000/jr16131
    [25] CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [26] LI Haoliang, LI Mingdian, CUI Xingchao, et al. Man-made target structure recognition with polarimetric correlation pattern and roll-invariant feature coding[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8024105. doi: 10.1109/LGRS.2021.3121100
    [27] WU Guoqing, CHEN Siwei, LI Yongzhen, et al. Null-pol response pattern in polarimetric rotation domain: Characterization and application[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503105. doi: 10.1109/LGRS.2021.3139889
    [28] VAN ZYL J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 337–348. doi: 10.1109/36.54360
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  166
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-08-23
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回