高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种考虑预测电价和碳排放成本的大规模机组检修决策方法

梅竞成 齐冬莲 张建良 王震宇 陈郁林

梅竞成, 齐冬莲, 张建良, 王震宇, 陈郁林. 一种考虑预测电价和碳排放成本的大规模机组检修决策方法[J]. 电子与信息学报, 2022, 44(11): 3767-3776. doi: 10.11999/JEIT220491
引用本文: 梅竞成, 齐冬莲, 张建良, 王震宇, 陈郁林. 一种考虑预测电价和碳排放成本的大规模机组检修决策方法[J]. 电子与信息学报, 2022, 44(11): 3767-3776. doi: 10.11999/JEIT220491
MEI Jingcheng, QI Donglian, ZHANG Jianliang, WANG Zhenyu, CHEN Yulin. A Decision Method of the Large-scale Unit Maintenance Scheduling Considering Predicted Electricity Price and Carbon Emission Cost[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3767-3776. doi: 10.11999/JEIT220491
Citation: MEI Jingcheng, QI Donglian, ZHANG Jianliang, WANG Zhenyu, CHEN Yulin. A Decision Method of the Large-scale Unit Maintenance Scheduling Considering Predicted Electricity Price and Carbon Emission Cost[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3767-3776. doi: 10.11999/JEIT220491

一种考虑预测电价和碳排放成本的大规模机组检修决策方法

doi: 10.11999/JEIT220491
基金项目: 国家自然科学基金(62127803)
详细信息
    作者简介:

    梅竞成:男,博士生,研究方向为电力系统运行优化

    齐冬莲:女,教授,研究方向为控制理论与控制工程、电气工程

    张建良:男,教授级高级工程师,研究方向为电气工程、分布式优化与博弈论

    王震宇:男,博士生,研究方向为电力系统状态估计

    陈郁林:男,博士,研究方向为分布式控制在电网中应用、电气工程

    通讯作者:

    齐冬莲 qidl@zju.edu.cn

  • 中图分类号: O157

A Decision Method of the Large-scale Unit Maintenance Scheduling Considering Predicted Electricity Price and Carbon Emission Cost

Funds: The National Natural Science Foundation of China (62127803)
  • 摘要: 随着国内电力市场和碳市场改革的持续深入,发电机组检修决策对于保证电力系统安全可靠运行和发电厂商经济收益的影响越来越深,同时机组检修优化问题的整数变量规模和约束条件规模急剧增加对优化问题的求解带来巨大挑战。对此,该文在考虑电力系统可靠性机组检修优化模型上,提出通过贝叶斯优化的方法训练检修优化模型,进而获得最佳分支打分因子值,然后加速整数规划中分支定界求解过程的方法,适用于大规模电力系统机组检修问题。此外,进一步剖析了发电机组发电收益和碳排放成本核算机理,提出一种电力市场环境下考虑碳排放成本的发电机组检修协调机制,在保证电力系统安全运行基础上,最大化各发电厂商检修机组的电能量市场和碳市场利益。最后,通过IEEE-118节点标准算例验证了该方法的有效性和工程实用性。
  • 图  1  机组检修协调机制

    图  2  年度系统负荷线

    图  3  基于安全可靠性的机组检修计划

    图  4  不同计算精度不同算法下的机组检修模型求解对比时间图

    图  5  只考虑电价预测时机组检修容量分布

    图  6  只考虑碳排放成本的机组检修容量分布

    图  7  不同检修优化模型对应的系统备用

    表  1  发电机组检修参数表

    51421242526273639404851
    检修时间(周)28446462101022
    容量(MW)185100148255260100491100100100100100
    下载: 导出CSV

    表  2  发电机组碳排放情况

    机组发电成本$ c(t) $(元/MWh)CO2排放率(tCO2/MWh)历史基准发电量(GWh)平均历史碳排放率(tCO2/MWh)
    53200.805550.8
    143481.00300
    214000.9444
    243901.2765
    253601.3780
    263601.1300
    274000.71473
    364201.2300
    394201.2300
    403500.8300
    483601.1300
    513601.1300
    下载: 导出CSV
  • [1] MOYO L, NWULU N I, EKPENYONG U E, et al. A tri-objective model for generator maintenance scheduling[J]. IEEE Access, 2021, 9: 136384–136394. doi: 10.1109/ACCESS.2021.3112157
    [2] SALGADO K, SEBASTIÁN D, and BADAOUI M. Coordination between long-term generation maintenance scheduling and short-term TCUC[C]. 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 2021: 1−8.
    [3] SURESH K and KUMARAPPAN N. Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem[J]. Swarm and Evolutionary Computation, 2013, 9: 69–89. doi: 10.1016/j.swevo.2012.11.003
    [4] BADRI A and NIAZI A N. Preventive generation maintenance scheduling considering system reliability and energy purchase in restructured power systems[J]. Journal of Basic and Applied Scientific Research, 2012, 2(12): 12773–12786.
    [5] FU Jianfeng, NÚÑEZ A, and DE SCHUTTER B. A short-term preventive maintenance scheduling method for distribution networks with distributed generators and batteries[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2516–2531. doi: 10.1109/TPWRS.2020.3037558
    [6] PAPADOPOULOS P, COIT D W, and EZZAT A A. Seizing opportunity: Maintenance optimization in offshore wind farms considering accessibility, production, and crew dispatch[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 111–121. doi: 10.1109/TSTE.2021.3104982
    [7] MANSHADI S D and KHODAYAR M E. Risk-averse generation maintenance scheduling with microgrid aggregators[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6470–6479. doi: 10.1109/TSG.2017.2713719
    [8] KAMALI R, KHAZAEI P, BANIZAMANI P, et al. Stochastic unit generation maintenance scheduling considering renewable energy and network constraints[C]. 2018 World Automation Congress (WAC), Stevenson, USA, 2018: 1−6.
    [9] ZHU Zikun, ZENG Jianxin, ZHENG Xiaoli, et al. Monthly generation unit maintenance optimization method considering power supply capacity and peak regulation capacity[C]. Proceedings of 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, 2019: 110−115.
    [10] XIANG Hongji, DAI Chaohua, ZHAO Chuan, et al. Generating units maintenance scheduling considering peak regulation pressure with large-scale wind farms[C]. 2016 China International Conference on Electricity Distribution (CICED), Xi’an, China, 2016: 1–6.
    [11] 袁泉, 游伟, 季新生, 等. 虚拟网络功能资源容量自适应调整方法[J]. 电子与信息学报, 2021, 43(7): 1841–1848. doi: 10.11999/JET200110

    YUAN Quan, YOU Wei, JI Xinsheng, et al. Adaptive scaling of virtualized network function resource capacity[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1841–1848. doi: 10.11999/JET200110
    [12] 程永生, 朱江, 林孝康. 引入D2D通信的蜂窝网上行资源分配算法[J]. 电子与信息学报, 2014, 36(12): 2822–2827. doi: 10.3724/SP.J.1146.2014.00056

    CHENG Yongsheng, ZHU Jiang, and LIN Xiaokang. Uplink resource allocation in device-to-device enabled cellular networks[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2822–2827. doi: 10.3724/SP.J.1146.2014.00056
    [13] 熊钢, 胡宇翔, 段通, 等. 一种软件定义网络的安全服务链动态组合机制[J]. 电子与信息学报, 2016, 38(5): 1234–1241. doi: 10.11999/JEIT150876

    XIONG Gang, HU Yuxiang, DUAN Tong, et al. A dynamic composition mechanism for the security service chain oriented software defined networking[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1234–1241. doi: 10.11999/JEIT150876
    [14] 李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11): 2521–2537. doi: 10.16383/j.aas.c200551

    LI Kaiwen, ZHANG Tao, WANG Rui, et al. Research reviews of combinatorial optimization methods based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(11): 2521–2537. doi: 10.16383/j.aas.c200551
    [15] HUANG Guyue, HU Jingbo, HE Yifan, et al. Machine learning for electronic design automation: A survey[J]. ACM Transactions on Design Automation of Electronic Systems, 2021, 26(5): 40. doi: 10.1145/3451179
    [16] CHENG Ruoyu and YAN Junchi. On joint learning for solving placement and routing in chip design[C]. Proceedings of the 34th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2021: 16508−16519.
    [17] LIU Rui, LEE M, YU Guanding, et al. User association for millimeter-wave networks: A machine learning approach[J]. IEEE Transactions on Communications, 2020, 68(7): 4162–4174. doi: 10.1109/TCOMM.2020.2983036
    [18] LEE M, YU Guanding, and LI G Y. Learning to branch: Accelerating resource allocation in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 958–970. doi: 10.1109/TVT.2019.2953724
    [19] 董哲康. 基于忆阻器的电路分析及其在神经形态系统中的应用[D]. [博士论文], 浙江大学, 2019.

    DONG Zhekang. Memristor based circuit analysis and its applications in neuromorphic systems[D]. [Ph. D. dissertation], Zhejiang University, 2019.
    [20] LEE M, YU Guanding, and LI G Y. Graph embedding-based wireless link scheduling with few training samples[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2282–2294. doi: 10.1109/TWC.2020.3040983
    [21] XAVIER Á S, QIU Feng, and AHMED S. Learning to solve large-scale security-constrained unit commitment problems[J]. INFORMS Journal on Computing, 2021, 33(2): 739–756. doi: 10.1287/ijoc.2020.0976
    [22] LIN Xinming, HOU Z J, REN Huiying, et al. Approximate mixed-integer programming solution with machine learning technique and linear programming relaxation[C]. 2019 3rd International Conference on Smart Grid and Smart Cities (ICSGSC), Berkeley, USA, 2019: 101−107.
    [23] MARCOS ALVAREZ A, LOUVEAUX Q, and WEHENKEL L. A supervised machine learning approach to variable branching in branch-and-bound[R]. 2014.
    [24] ASLAM M, LEE S J, KHANG S H, et al. Two-stage attention over LSTM with Bayesian optimization for day-ahead solar power forecasting[J]. IEEE Access, 2021, 9: 107387–107398. doi: 10.1109/ACCESS.2021.3100105
    [25] ACHTERBERG T, KOCH T, and MARTIN A. Branching rules revisited[J]. Operations Research Letters, 2005, 33(1): 42–54. doi: 10.1016/j.orl.2004.04.002
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  219
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-07-28
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回