高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平稳机载全极化SAR定量化测量误差分析及处理方法

刘亚波 周晓杰 陆岷 喻忠军

刘亚波, 周晓杰, 陆岷, 喻忠军. 非平稳机载全极化SAR定量化测量误差分析及处理方法[J]. 电子与信息学报, 2023, 45(5): 1611-1618. doi: 10.11999/JEIT220475
引用本文: 刘亚波, 周晓杰, 陆岷, 喻忠军. 非平稳机载全极化SAR定量化测量误差分析及处理方法[J]. 电子与信息学报, 2023, 45(5): 1611-1618. doi: 10.11999/JEIT220475
LIU Yabo, ZHOU Xiaojie, LU Min, YU Zhongjun. Error Analysis and Processing Method of Non-stationary Airborne Fully Polarimetric SAR Quantitative Measurement[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1611-1618. doi: 10.11999/JEIT220475
Citation: LIU Yabo, ZHOU Xiaojie, LU Min, YU Zhongjun. Error Analysis and Processing Method of Non-stationary Airborne Fully Polarimetric SAR Quantitative Measurement[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1611-1618. doi: 10.11999/JEIT220475

非平稳机载全极化SAR定量化测量误差分析及处理方法

doi: 10.11999/JEIT220475
详细信息
    作者简介:

    刘亚波:男,副研究员,博士,研究方向为合成孔径雷达系统仿真与信号处理

    周晓杰:男,硕士生,研究方向为极化合成孔径雷达定标

    陆岷:男,助理研究员,博士,研究方向为机载合成孔径雷达系统设计

    喻忠军:男,研究员,研究方向为机载合成孔径雷达系统设计

    通讯作者:

    刘亚波 liuyb@aircas.ac.cn

  • 中图分类号: TN958.2

Error Analysis and Processing Method of Non-stationary Airborne Fully Polarimetric SAR Quantitative Measurement

  • 摘要: 即使SAR系统内外定标非常准确,在不同飞行条件下,机载全极化SAR测量精度仍然存在一定的变化,特别在非平稳及高波段时,精度恶化较为严重。针对该问题,该文首先建立了非平稳环境下全极化SAR误差模型,然后分析了分时收发体制下通道间轨迹的微弱变化对极化相位不平衡度的影响,指出随着波段的提升,相同运动误差导致的相位不平衡度相应加重,据此给出了相应的处理方法。最后通过仿真及高分航空专项S波段SAR获取的数据对该方法进行了检验,开展的多次应用示范,也验证了方法的有效性和稳定性。
  • 图  1  全极化天线嵌套实现和分孔径实现方式

    图  2  机载全极化SAR定量化测量的处理流程

    图  3  速度、通道间速度差与位置差示意

    图  4  点目标相位误差

    图  5  Pauli分解图

    图  6  定标场飞行情况

    图  7  测区飞行情况

    表  1  国内外典型SAR系统定标精度

    平台SAR绝对定标精度(dB)相对辐射定标精度(dB)极化隔离度(dB)通道不平衡度(dB)相位不平衡度(°)
    机载毫米波SAR[15]$ \le 2 $$ \le 1 $
    X-SAR[16]$ \le 2$$ \le 1$$ \pm 0.2$$ \pm 11$
    UAVSAR[20]$ \le 1$$ \le 0.7$$ - 30$$ \pm 0.04$$ \pm 6$
    F-SAR[21]$ \le 2$$ \le 0.3$$ - 37$$ \pm 2$
    Pi-SAR-L2[22]$ \le 1$$ - 35$$ \pm 0.2$$ \pm 5$
    星载SIR-C[23]$ \le 3 $$ \le 1.5 $$ - 30$$ \pm 0.4$$ \pm 10$
    Tandem-X[24]$ \le 0.5$$ \le 0.2$
    Sentinel-1A[25]$ \le 1$$ \le 0.5$$ - 33.2$$ \pm 0.2$$ \pm 13$
    AlSO-2[26]$ \le 1$$ \le 0.5$$ - 40$$ \pm 1$$ \pm 5$
    GF-3[27,28]$ \le 1.5$$ \le 1$$ - 45$$ \pm 0.5$$ \pm 10$
    下载: 导出CSV

    表  2  雷达及飞行参数表

    参数数值
    载频(GHz)3,9,35
    采样频率(MHz)400
    中心视角(°)60
    带宽(MHz)300
    中心斜距(m)5000
    数据积累时间(s)11.1
    航向速度(m/s)70
    YZ方向速度(m/s)0.1
    YZ方向加速度(m/s2)0.01
    下载: 导出CSV

    表  3  S波段飞行参数

    参数数值
    机场测区
    载频(GHz)3.240040~55300
    采样频率(MHz)
    视角(°)
    带宽(MHz)
    中心斜距(m)28175818
    飞行高度(m)19934206
    飞机速度(m/s)7176
    下载: 导出CSV

    表  4  机场角反射器补偿前后性能指标(°)

    补偿前补偿后
    同极化通道相位不平衡度3.473.19
    交叉极化通道相位不平衡度3.071.17
    下载: 导出CSV

    表  5  裸土同极化通道相位测量(°)

    区域入射角补偿前补偿后
    141.932.151.46
    242.833.261.71
    344.392.311.51
    447.033.752.22
    550.313.992.77
    651.934.163.61
    752.516.173.9
    相位不平衡度3.892.62
    下载: 导出CSV
  • [1] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2009.
    [2] DAI Yanhui, FENG Lian, HOU Xuejiao, et al. Policy-driven changes in enclosure fisheries of large lakes in the Yangtze plain: Evidence from satellite imagery[J]. Science of the Total Environment, 2019, 688: 1286–1297. doi: 10.1016/j.scitotenv.2019.06.179
    [3] KOSTINSKI A and BOERNER W. On foundations of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395–1404. doi: 10.1109/TAP.1986.1143771
    [4] GIULI D. Polarization diversity in radars[J]. Proceedings of the IEEE, 1986, 74(2): 245–269. doi: 10.1109/PROC.1986.13457
    [5] 李宏宇, 李坤, 杨知. 基于时间序列全极化合成孔径雷达的水稻物候期反演[J]. 浙江大学学报:农业与生命科学版, 2021, 47(3): 404–414.

    LI Hongyu, LI Kun, and YANG Zhi. Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2021, 47(3): 404–414.
    [6] SHI Jiancheng, WANG J, HSU A, et al. Estimation of soil moisture and surface roughness parameters using L-band SAR measurements[C]. 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 1995: 507–509.
    [7] 李凉海, 刘善伟, 周鹏, 等. SAR卫星组网观测技术与海洋应用研究进展[J]. 海洋科学, 2021, 45(5): 145–156. doi: 10.11759/hykx20210415002

    LI Lianghai, LIU Shanwei, ZHOU Peng, et al. Research progress of SAR satellite network observation technology and ocean application[J]. Marine Sciences, 2021, 45(5): 145–156. doi: 10.11759/hykx20210415002
    [8] 郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020
    [9] 刘之榆, 刘忠, 万炜, 等. SAR与光学遥感影像的玉米秸秆覆盖度估算[J]. 遥感学报, 2021, 25(6): 1308–1323. doi: 10.11834/jrs.20210053

    LIU Zhiyu, LIU Zhong, WAN Wei, et al. Estimation of maize residue cover on the basis of SAR and optical remote sensing image[J]. Journal of Remote Sensing, 2021, 25(6): 1308–1323. doi: 10.11834/jrs.20210053
    [10] SCHWERDT M, HOUNAM D, BRAUTIGAM B, et al. TerraSAR-X: Calibration concept of a multiple mode high resolution SAR[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 4874–4877. doi: 10.1109/IGARSS.2005.1526766.
    [11] SCHWARTZ M A and GINSBERG M H. Networks and crosstalk: Integrin signalling spreads[J]. Nature Cell Biology, 2002, 4(4): E65–E68. doi: 10.1038/ncb0402-e65
    [12] VAN ZYL J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 337–348. doi: 10.1109/36.54360
    [13] 涂尚坦, 许丽颖, 王芳, 等. 基于极化定标的极化隔离度空变分析[J]. 现代雷达, 2020, 42(2): 12–15. doi: 10.16592/j.cnki.1004-7859.2020.02.003

    TU Shangtan, XU Liying, WANG Fang, et al. Analysis of polarization isolation spatial variation based on polarimetric calibration[J]. Modern Radar, 2020, 42(2): 12–15. doi: 10.16592/j.cnki.1004-7859.2020.02.003
    [14] FREEMAN A. SAR calibration: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(6): 1107–1121. doi: 10.1109/36.193786
    [15] 汪伟, 李军, 胡庆荣. 基于点目标的机载毫米波SAR辐射定标[C]. 第三届高分辨率对地观测学术年会优秀论文集, 北京, 中国, 2014: 502–513.
    [16] SHEN Ting, LI Jun, WANG Zhirui, et al. The airborne X-SAR calibration with high resolution[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2017: 1–5. doi: 10.1109/RADAR.2016.8059209.
    [17] 刘亚波, 刘霖, 童智勇, 等. S波段高分辨宽幅SAR辐射定标及误差分析方法[J]. 电子与信息学报, 2019, 41(8): 1946–1951. doi: 10.11999/JEIT180983

    LIU Yabo, LIU Lin, TONG Zhiyong, et al. A radiometric calibration and error analysis method for HWRS SAR at S-band[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1946–1951. doi: 10.11999/JEIT180983
    [18] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: John Wiley & Sons, 1991.
    [19] 张过, 蒋永华, 李立涛, 等. 高分辨率光学/SAR卫星几何辐射定标研究进展[J]. 测绘学报, 2019, 48(12): 1604–1623. doi: 10.11947/j.AGCS.2019.20190469

    ZHANG Guo, JIANG Yonghua, LI Litao, et al. Research progress of high-resolution optical/SAR satellite geometric radiometric calibration[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1604–1623. doi: 10.11947/j.AGCS.2019.20190469
    [20] FORE A G, CHAPMAN B D, HAWKINS B P, et al. UAVSAR polarimetric calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3481–3491. doi: 10.1109/TGRS.2014.2377637
    [21] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
    [22] SHIMADA M, KAWANO N, WATANABE M, et al. Calibration and validation of the Pi-SAR-L2[C]. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 194–197.
    [23] FREEMAN A, ALVES M, CHAPMAN B, et al. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 848–857. doi: 10.1109/36.406671
    [24] SCHWERDT M, GONZALEZ J H, BACHMANN M, et al. In-orbit calibration of the TanDEM-X system[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2420–2423.
    [25] SCHWERDT M, SCHMIDT K, RAMON N T, et al. Independent verification of the sentinel-1A system calibration-first results[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [26] MORIYAMA T. Polarimetric calibration of PALSAR2[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1284–1287.
    [27] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049
    [28] 李亮, 洪峻, 陈琦, 等. 基于极化有源定标器的高分三号SAR在轨测试分析[J]. 电子学报, 2018, 46(9): 2157–2164. doi: 10.3969/j.issn.0372-2112.2018.09.016

    LI Liang, HONG Jun, CHEN Qi, et al. In-orbit calibration of GF-3 SAR using quad-polarized transponder[J]. Acta Electronica Sinica, 2018, 46(9): 2157–2164. doi: 10.3969/j.issn.0372-2112.2018.09.016
    [29] 张王菲, 陈尔学, 李增元, 等. 雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444–461. doi: 10.12000/JR20051

    ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444–461. doi: 10.12000/JR20051
    [30] 刘健, 郭交, 韩文霆. 基于合成孔径雷达的土壤水分反演研究进展[J]. 三峡生态环境监测, 2020, 5(2): 44–53. doi: 10.19478/j.cnki.2096-2347.2020.02.07

    LIU Jian, GUO Jiao, and HAN Wenting. Advances in re-search on soil moisture retrieval using synthetic aperture radar[J]. Ecology and Environmental Monitoring of Three Gorges, 2020, 5(2): 44–53. doi: 10.19478/j.cnki.2096-2347.2020.02.07
    [31] QUEGAN S, LOMAS M, PAPATHANASSIOU K P, et al. Calibration challenges for the biomass P-Band SAR instrument[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 8575–8578. doi: 10.1109/IGARSS.2018.8518646.
    [32] CUMMING I G, 洪文, 胡东辉, 译. 合成孔径雷达成像: 算法与实现[M]. 北京: 电子工业出版社, 2007: 64.

    CUMMING I G, HONG Wen, and HU Donghui, translation. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2007: 64.
    [33] 张海瀛. 全极化SAR/InSAR数据定标技术研究[D]. [博士论文], 西安电子科技大学, 2018.

    ZHANG Haiying. Study on fully polarimetric SAR/InSAR data calibration technology[D]. [Ph. D. dissertation], Xidian University, 2018.
    [34] 杨杰, 常永雷, 李平湘, 等. 采用螺旋散射的SAR极化定标参考地物提取方法[J]. 武汉大学学报:信息科学版, 2018, 43(12): 2023–2029.

    YANG Jie, CHANG Yonglei, LI Pingxiang, et al. Distributed targets extraction for SAR polarimetric calibration using helix scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023–2029.
    [35] GUISSARD A. Phase calibration of polarimetric radars from slightly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 712–715. doi: 10.1109/36.297991
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  274
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-07-07
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回